
www.manaraa.com

(page i)
Average-Case Analysis of Algorithmsand Data StructuresL'analyse en moyenne des algorithmeset des structures de donn�eesJe�rey Scott Vitter1 and Philippe Flajolet2Abstract. This report is a contributed chapter to the Handbook of Theoretical ComputerScience (North-Holland, 1990). Its aim is to describe the main mathematical methods andapplications in the average-case analysis of algorithms and data structures. It comprisestwo parts: First, we present basic combinatorial enumerations based on symbolic methodsand asymptotic methods with emphasis on complex analysis techniques (such as singularityanalysis, saddle point, Mellin transforms). Next, we show how to apply these generalmethods to the analysis of sorting, searching, tree data structures, hashing, and dynamicalgorithms. The emphasis is on algorithms for which exact \analytic models" can bederived.R�esum�e. Ce rapport est un chapitre qui parâ�t dans le Handbook of Theoretical Com-puter Science (North-Holland, 1990). Son but est de d�ecrire les principales m�ethodes etapplications de l'analyse de complexit�e en moyenne des algorithmes. Il comprend deuxparties. Tout d'abord, nous donnons une pr�esentation des m�ethodes de d�enombrementscombinatoires qui repose sur l'utilisation de m�ethodes symboliques, ainsi que des tech-niques asymptotiques fond�ees sur l'analyse complexe (analyse de singularit�es, m�ethodedu col, transformation de Mellin). Ensuite, nous d�ecrivons l'application de ces m�ethodesg�enerales �a l'analyse du tri, de la recherche, de la manipulation d'arbres, du hachage etdes algorithmes dynamiques. L'accent est mis dans cette pr�esentation sur les algorithmespour lesquels existent des hh mod�eles analytiques ii exacts.1 Dept. of Computer Science, Brown University, Providence, R. I. 02912, USA. Research wasalso done while the author was on sabbatical at INRIA in Rocquencourt, France, and at EcoleNormale Sup�erieure in Paris. Support was provided in part by NSF research grant DCR{84{03613, by an NSF Presidential Young Investigator Award with matching funds from an IBMFaculty Development Award and an AT&T research grant, and by a Guggenheim Fellowship.2 INRIA, Domaine de Voluceau, Rocquencourt, B. P. 105, 78153 Le Chesnay, France.i

www.manaraa.com

(page ii)
Table of Contents0. Introduction . 11. Combinatorial Enumerations . 51.1. Overview . 51.2. Ordinary Generating Functions 71.3. Exponential Generating Functions 101.4. From Generating Functions to Counting 132. Asymptotic Methods . 152.1. Generalities . 152.2. Singularity Analysis . 172.3. Saddle Point Methods . 202.4. Mellin Transforms . 222.5. Limit Probability Distributions 253. Sorting Algorithms . 283.1. Inversions . 283.2. Insertion Sort . 313.3. Shellsort . 313.4. Bubble Sort . 373.5. Quicksort . 393.6. Radix-Exchange Sort . 393.7. Selection Sort and Heapsort . 403.8. Merge Sort . 414. Recursive Decompositions and Algorithms on Trees 434.1. Binary Trees and Plane Trees . 434.2. Binary Search Trees . 514.3. Radix-Exchange Tries . 574.4. Digital Search Trees . 60ii

www.manaraa.com

5. Hashing and Address Computation Techniques 625.1 Bucket Algorithms and Hashing by Chaining 635.2 Hashing by Open Addressing . 766. Dynamic Algorithms . 816.1. Integrated Cost and the History Model 816.2. Size of Dynamic Data Structures 836.3. Set Union-Find Algorithms . 87References . 90Index and Glossary . 97

iii

www.manaraa.com

(page 1)
Average-Case Analysis of Algorithmsand Data StructuresJe�rey Scott Vitter and Philippe Flajolet

0. IntroductionAnalyzing an algorithm means, in its broadest sense, characterizing the amount of com-putational resources that an execution of the algorithm will require when applied to dataof a certain type. Many algorithms in classical mathematics, primarily in number theoryand analysis, were analyzed by eighteenth and nineteenth century mathematicians. Forinstance, Lam�e in 1845 showed that Euclid's GCD algorithm requires at most � log� n di-vision steps (where � is the \golden ratio" (1+p5)=2) when applied to numbers boundedby n. Similarly, the well-known quadratic convergence of Newton's method is a way ofdescribing its complexity/accuracy tradeo�.This chapter presents analytic methods for average-case analysis of algorithms, withspecial emphasis on the main algorithms and data structures used for processing nonnu-merical data. We characterize algorithmic solutions to a number of essential problems,such as sorting, searching, pattern matching, register allocation, tree compaction, retrievalof multidimensional data, and e�cient access to large �les stored on secondary memory.The �rst step required to analyze an algorithm A is to de�ne an input data model anda complexity measure:1. Assume that the input to A is data of a certain type. Each commonly used data typecarries a natural notion of size: the size of an array is the number of its elements; thesize of a �le is the number of its records; the size of a character string is its length;and so on. An input model is speci�ed by the subset In of inputs of size n and by aprobability distribution over In, for each n. For example, a classical input model forcomparison-based sorting algorithms is to assume that the n inputs are real numbersindependently and uniformly distributed in the unit interval [0; 1]. An equivalentmodel is to assume that the n inputs form a random permutation of f1; 2; : : : ; ng.2. The main complexity measures for algorithms executed on sequential machines aretime utilization and space utilization. These may be either \raw" measures (such asthe time in nanoseconds on a particular machine or the number of bits necessary forstoring temporary variables) or \abstract" measures (such as the number of compar-ison operations or the number of disk pages accessed).

www.manaraa.com

2 / Average-Case Analysis of Algorithms and Data Structures

Figure 1. Methods used in the average-case analysis of algorithms.Let us consider an algorithm A with complexity measure �. The worst-case andbest-case complexities of algorithm A over In are de�ned in an obvious way. Determiningthe worst-case complexity requires constructing extremal con�gurations that force �n, therestriction of � to In, to be as large as possible.The average-case complexity is de�ned in terms of the probabilistic input model:�n[A] = Ef�n[A]g =Xk k Prf�n[A] = kg;where Ef:g denotes expected value and Prf:g denotes probability with respect to theprobability distribution over In. Frequently, In is a �nite set and the probabilistic modelassumes a uniform probability distribution over In. In that case, �n[A] takes the form�n[A] = 1In Xk kJnk;where In = jInj and Jnk is the number of inputs of size n with complexity k for algorithmA.Average-case analysis then reduces to combinatorial enumeration.The next step in the analysis is to express the complexity of the algorithm in termsof standard functions like n�(logn)�(log logn) , where �, �, and are constants, so thatthe analytic results can be easily interpreted. This involves getting asymptotic estimates.The following steps give the route followed by many of the average-case analyses thatappear in the literature (see Figure 1):1. RECUR: To determine the probabilities or the expectations in exact form, start bysetting up recurrences that relate the behavior of algorithm A on inputs of size n toits behavior on smaller (and similar) inputs.2. SOLVE: Solve previous recurrences explicitly using classical algebra.3. ASYMPT: Use standard real asymptotics to estimate those explicit expressions.

www.manaraa.com

Section 0. Introduction / 3An important way to solve recurrences is via the use of generating functions:4. GENFUN: Translate the recurrences into equations involving generating functions.The coe�cient of the nth term of each generating function represents a particularprobability or expectation. In general we obtain a set of functional equations.5. EXPAND: Solve those functional equations using classical tools from algebra andanalysis, then expand the solutions to get the coe�cients in explicit form.The above methods can often be bypassed by the following more powerful methods,which we emphasize in this chapter:6. SYMBOL: Bypass the use of recurrences and translate the set-theoretic de�nitionsof the data structures or underlying combinatorial structures directly into functionalequations involving generating functions.7. COMPLEX: Use complex analysis to translate the information available from thefunctional equations directly into asymptotic expressions of the coe�cients of thegenerating functions.The symbolic method (SYMBOL) is often direct and has the advantage of characterizingthe special functions that arise from the analysis of a natural class of related algorithms.The COMPLEX method provides powerful tools for direct asymptotics from generatingfunctions. It has the intrinsic advantage in many cases of providing asymptotic estimatesof the coe�cients of functions known only implicitly from their functional equations.In Sections 1 and 2 we develop general techniques for the mathematical analysis ofalgorithms, with emphasis on the SYMBOL and COMPLEX methods. Section 1 is devotedto exact analysis and combinatorial enumeration. We present the primary methods used toobtain counting results for the analysis of algorithms, with emphasis on symbolic methods(SYMBOL). The main mathematical tool we use is the generating function associatedwith the particular class of structures. A rich set of combinatorial constructions translatesdirectly into functional relations involving the generating functions. In Section 2 we discussasymptotic analysis. We briey review methods from elementary real analysis and thenconcentrate on complex analysis techniques (COMPLEX). There we use analytic propertiesof generating functions to recover information about their coe�cients. The methods areoften applicable to functions known only indirectly via functional equations, a situationthat presents itself naturally when counting recursively de�ned structures.In Sections 3{6, we apply general methods for analysis of algorithms, especially thosedeveloped in Sections 1 and 2, to the analysis of a large variety of algorithms and data struc-tures. In Section 3, we describe several important sorting algorithms and apply statisticsof inversion tables to the analysis of the iteration-based sorting algorithms. In Section 4,we extend our approach of Section 1 to consider valuations on combinatorial structures,which we use to analyze trees and structures with a tree-like recursive decomposition; thisincludes plane trees, binary and multidimensional search trees, digital search trees, quick-sort, radix-exchange sort, and algorithms for register allocation, pattern matching, andtree compaction. In Section 5, we present a uni�ed approach to hashing, address calcula-tion techniques, and occupancy problems. Section 6 is devoted to performance measuresthat span a period of time, such as the expected amortized time and expected maximumdata structure space used by an algorithm.

www.manaraa.com

4 / Average-Case Analysis of Algorithms and Data StructuresGeneral References. Background sources on combinatorial enumerations and symbolicmethods include [Goulden and Jackson 1983] and [Comtet 1974]. General coverage ofcomplex analysis appears in [Titchmarsh 1939], [Henrici 1974], and [Henrici 1977], andapplications to asymptotics are discussed in [Bender 1974], [Olver 1974], [Bender andOrszag 1978], and [De Bruijn 1981]. Mellin transforms are covered in [Doetsch 1955], andlimit probability distributions are studied in [Feller 1971], [Sachkov 1978], and [Billings-ley 1986].For additional coverage of average-case analysis of algorithms and data structures, thereader is referred to Knuth's seminal multivolume work The Art of Computer Program-ming [Knuth 1973a], [Knuth 1981], [Knuth 1973b], and to [Flajolet 1981], [Greene andKnuth 1982], [Sedgewick 1983], [Purdom and Brown 1985], and [Flajolet 1988]. Descrip-tions of most of the algorithms analyzed in this chapter can be found in Knuth's books,[Gonnet 1984] and [Sedgewick 1988].

www.manaraa.com

Section 1.1. Overview / 51. Combinatorial EnumerationsOur main objective in this section is to introduce useful combinatorial constructions thattranslate directly into generating functions. Such constructions are called admissible. InSection 1.2 we examine admissible constructions for ordinary generating functions, andin Section 1.3 we consider admissible constructions for exponential generating functions,which are related to the enumeration of labeled structures.1.1. OverviewThe most elementary structures may be enumerated using sum/product rulesyTheorem 0 [Sum-Product rule]. Let A;B; C be sets with cardinalities a; b; c. ThenC = A [B; with A \ B = ; =) c = a+ b;C = A� B =) c = a � b:Thus, the number of binary strings of length n is 2n, and the number of permutationsof f1; 2; : : : ; ng is n!.In the next order of di�culty, explicit forms are replaced by recurrences when struc-tures are de�ned in terms of themselves. For example, let Fn be the number of coveringsof the interval [1; n] by disjoint segments of length 1 and 2. By considering the two possi-bilities for the last segment used, we get the recurrenceFn = Fn�1 + Fn�2; for n � 2; (1a)with initial conditions F0 = 0, F1 = 1. Thus, from the classical theory of linear recurrences,we �nd the Fibonacci numbers expressed in terms of the golden ratio �:Fn = 1p5(�n � �̂n); with �; �̂ = 1�p52 : (1b)This example illustrates recurrence methods (RECUR) in (1a) and derivation of explicitsolutions (SOLVE) in (1b).Another example, which we shall discuss in more detail in Section 4:1, is the num-ber Bn of plane binary trees with n internal nodes [Knuth 1973a]. By considering allpossibilities for left and right subtrees, we get the recurrenceBn = n�1Xk=0BkBn�k�1; for n � 1; (2a)with the initial condition B0 = 1. To solve (2a), we introduce a generating function (GF):Let B(z) =Pn�0Bnzn. From Eq. (2a) we getB(z) = 1 + z B2(z); (2b)y We also use the sum notation C = A+B to represent the union of A and B when A\B = ;.

www.manaraa.com

6 / Average-Case Analysis of Algorithms and Data Structuresand solving the quadratic equation for B(z), we getB(z) = 1�p1� 4z2z : (2c)Finally, the Taylor expansion of (1 + x)1=2 gives usBn = 1n+ 1�2nn � = (2n)!n! (n+ 1)! : (2d)In this case, we started with recurrences (RECUR) in (2a) and introduced generatingfunctions (GENFUN), leading to (2b); solving and expanding (EXPAND) gave the explicitsolutions (2c) and (2d). (This example dates back to Euler; the Bn are called Catalannumbers.)The symbolic method (SYMBOL) that we are going to present can be applied to thislast example as follows: The class B of binary trees is de�ned recursively by the equationB = f g [(fg � B � B) ; (3a)where and represent external nodes and internal nodes, respectively. A standardlemma asserts that disjoint unions and cartesian products of structures correspond respec-tively to sums and products of corresponding generating functions. Therefore, speci�ca-tion (3a) translates term by term directly into the generating function equationB(z) = 1 + z �B(z) �B(z); (3b)which agrees with (2b).Definition. A class of combinatorial structures C is a �nite or countable set togetherwith an integer valued function j:jC, called the size function, such that for each n � 0the number Cn of structures in C of size n is �nite. The counting sequence for class Cis the integer sequence fCngn�0. The ordinary generating function (OGF) C(z) and theexponential generating function (EGF) bC(z) of a class C are de�ned, respectively, byC(z) =Xn�0Cnzn and bC(z) =Xn�0Cn znn! : (4)The coe�cient of zn in the expansion of a function f(z) (or simply, the nth coe�cientof f(z)) is written [zn]f(z); we have Cn = [zn]C(z) = n! [zn] bC(z).The generating functions C(z) and bC(z) can also be expressed asC(z) =X2C zjj and bC(z) =X2C zjjjj! ; (5)which can be checked by counting the number of occurrences of zn in the sums.We shall adopt the notational convention that a class (say, C), its counting sequence(say, Cn or cn), its associated ordinary generating function (say, C(z) or c(z)), and its

www.manaraa.com

Section 1.2. Ordinary Generating Functions / 7associated exponential generating function (say, bC(z) or bc(z)) are named by the samegroup of letters.The basic notion for the symbolic method is that of an admissible construction in whichthe counting sequence of the construction depends only upon the counting sequences ofits components (see [Goulden and Jackson 1983], [Flajolet 1981], [Greene 1983]); such aconstruction thus \translates" over generating functions. It induces an operator of a moreor less simple form over formal power series. For instance, let U and V be two classes ofstructures, and let W = U � V (6a)be their cartesian product. If the size of an ordered pair w = (u; v) 2 W is de�ned asjwj = juj+ jvj, then by counting possibilities, we getWn =Xk�0UkVn�k; (6b)so that (6a) has the corresponding (ordinary) generating function equationW (z) = U(z)V (z) : (6c)Such a combinatorial (set-theoretic) construction that translates in the manner of (6a){(6c)is called admissible.1.2. Ordinary Generating FunctionsIn this section we present a catalog of admissible constructions for ordinary generatingfunctions (OGFs). We assume that the size of an element of a disjoint union W = U [Vis inherited from its size in its original domain; the size of a composite object (product,sequence, subset, etc.) is the sum of the sizes of its components.Theorem 1 [Fundamental sum/product theorem]. The disjoint union and cartesianproduct constructions are admissible for OGFs:W = U [V; with U \ V = ; =) W (z) = U(z) + V (z);W = U � V =) W (z) = U(z)V (z):Proof. Use recurrences Wn = Un + Vn and Wn = P0�k�n UkVn�k. Alternatively, useEq. (5) for OGFs, which yields for cartesian productsXw2W zjwj = X(u;v)2U�V zjuj+jvj = Xu2U zjuj �Xv2V zjvj:Let U be a class of structures that have positive size. Class W is called the sequenceclass of class U , denoted W = U�, if W is composed of all sequences (u1; u2; : : : ; uk) withuj 2 U . Class W is the (�nite) powerset of class U , denoted W = 2U , if W consists of all�nite subsets fu1; u2; : : : ; ukg of U (the uj are distinct), for k � 0.

www.manaraa.com

8 / Average-Case Analysis of Algorithms and Data StructuresTheorem 2. The sequence and powerset constructs are admissible for OGFs:W = U� =) W (z) = 11� U(z) ;W = 2U =) W (z) = e�(U)(z); where �(f) = f(z)1 � f(z2)2 + f(z3)3 � � � � :Proof. Let � denote the empty sequence. Then, for the sequence class of U , we haveW = U� � f�g+ U + (U � U) + (U � U � U) + � � � ;W (z) = 1 + U(z) + U(z)2 + U(z)3 + � � � = �1� U(z)��1: (7)The powerset class W = 2U is equivalent to an in�nite product:W = 2U = Yu2U(f�g+ fug);W (z) = Yu2U(1 + zjuj) =Yn (1 + zn)Un : (8)Computing logarithms and expanding, we getlogW (z) =Xn�1Un log(1 + zn) =Xn�1Unzn � 12Xn�1Unz2n + � � � :Other constructions can be shown to be admissible:1. Diagonals and subsets with repetitions. The diagonal W = f(u; u) j u 2 Ug of U � U ,written W = �(U � U), satis�es W (z) = U(z2). The class of multisets (or subsetswith repetitions) of class U is denoted W = RfUg. It is isomorphic to Qu2Ufug�, sothat its OGF satis�esW (z) = e	(U)(z); where 	(f) = f(z)1 + f(z2)2 + f(z3)3 + � � � : (9)2. Marking and composition. If U is formed with \atomic" elements (nodes, letters,etc.) that determine its size, then we de�ne the marking of U , denoted W = �fUg, toconsist of elements of U with one individual atom marked. Since Wn = nUn, it followsthat W (z) = z ddzU(z). Similarly, the composition of U and V, denoted W = U [V],is de�ned as the class of all structures resulting from substitutions of atoms of U byelements of V, and we have W (z) = U�V (z)�.Examples. 1. Combinations. Let m be a �xed integer and J (m) = f1; 2; : : : ;mg, eachelement of J (m) having size 1. The generating function of J (m) is J (m)(z) = mz. Theclass C(m) = 2J (m) is the set of all combinations of J (m). By Theorem 2, the generatingfunction of the number C(m)n of n-combinations of a set with m elements isC(m)(z) = e�(J(m))(z) = exp�mz1 � mz22 + mz33 � � � �� = exp�m log(1 + z)� = (1 + z)m;

www.manaraa.com

Section 1.2. Ordinary Generating Functions / 9and by extracting coe�cients we �nd as expectedC(m)n = �mn� = m!n! (m� n)! :Similarly, forR(m) = RfJ (m)g, the class of combinations with repetitions, we have from (9)R(m)(z) = (1� z)�m =) R(m)n = �m+ n� 1m� 1 �:2. Compositions and partitions. Let N = f1; 2; 3; : : :g, each i 2 N having size i. Thesequence class C = N � is called the set of integer compositions. Since N(z) = z=(1 � z)and C(z) = �1�N(z)��1, we haveC(z) = 1� z1� 2z =) Cn = 2n�1; for n � 1:The class P = RfNg is the set of integer partitions, and we haveP = Y�2Nf�g� =) P (z) = Yn�1 11� zn : (10)3. Formal languages. Combinatorial processes can often be encoded naturally asstrings over some �nite alphabet A. Regular languages are de�ned by regular expressionsor equivalently by deterministic or nondeterministic �nite automata. This is illustrated bythe following two theorems, based upon the work of Chomsky and Sch�utzenberger [1963].Further applications appear in [Berstel and Boasson 1989].Theorem 3a [Regular languages and rational functions]. If L is a regular language, thenits OGF is a rational function L(z) = P (z)=Q(z), where P (z) and Q(z) are polynomials.The counting sequence Ln satis�es a linear recurrence with constant coe�cients, and wehave, when n � n0, Ln =Xj �j(n)!nj ;for a �nite set of constants !j and polynomials �j(z).Proof Sketch. Let D be a deterministic automaton that recognizes L, and let Sj bethe set of words accepted by D when D is started in state j. The Sj satisfy a set oflinear equations (involving unions and concatenation with letters) constructed from thetransition table of the automaton. For generating functions, this translates into a set oflinear equations with polynomial coe�cients that can be solved by Cramer's rule.Theorem 3b [Context-free languages and algebraic functions]. If L is an unambiguouscontext-free language, then its OGF is an algebraic function. The counting sequence Lnsatis�es a linear recurrence with polynomial coe�cients: For a family qj(z) of polynomialsand n � n0, we have Ln = X1�j�m qj(n)Ln�j:

www.manaraa.com

10 / Average-Case Analysis of Algorithms and Data StructuresProof Sketch. Since the language is unambiguous, its counting problem is equivalentto counting derivation trees. A production in the grammar S ! aTbU + bUUa + abbatranslates into S(z) = z2T (z)U(z) + z2U2(z) + z4, where S(z) is the generating functionassociated with nonterminal S. We obtain a set of polynomial equations that reduces toa single equation P �z; L(z)� = 0 through elimination. To obtain the recurrence, we useComtet's theorem [Comtet 1969] (see also [Flajolet 1987] for corresponding asymptoticestimates).4. Trees. We shall study trees in great detail in Section 4.1. All trees here are rooted .In plane trees, subtrees under a node are ordered; in non-plane trees, they are unordered.If G is the class of general plane trees with all node degrees allowed, then G satis�es anequation G = fg�G�, signifying that a tree is composed of a root followed by a sequenceof subtrees. Thus, we haveG(z) = z1�G(z) =) G(z) = 1�p1� 4z2 and Gn = 1n�2n� 2n� 1 �:If H is the class of general non-plane trees, then H = fg �RfHg, so that H(z) satis�esthe functional equation H(z) = z eH(z)+H(z2)=2+H(z3)=3+���: (11)There are no closed form expressions for Hn = [zn]H(z). However, complex analysismethods make it possible to determine Hn asymptotically [P�olya 1937].1.3. Exponential Generating FunctionsExponential generating functions are essentially used for counting well-labeled structures.Such structures are composed of \atoms" (the size of a structure being the number ofits atoms), and each atom is labeled by a distinct integer. For instance, a labeled graphof size n is just a graph over the set of nodes f1; 2; : : : ; ng. A permutation (respectively,circular permutation) can be viewed as a linear (respectively, cyclic) directed graph whosenodes are labeled by distinct integers.The basic operation over labeled structures is the partitional product [Foata 1974],[Goulden and Jackson 1983], [Flajolet 1981, Chapter I], [Greene 1983]. The partitionalproduct of U and V consists of forming ordered pairs (u; v) from U �V and relabeling themin all possible ways that preserve the order of the labels in u and v. More precisely, letw 2 W be a labeled structure of size q. A 1{1 function � from f1; 2; : : : ; qg to f1; 2; : : : ; rg,where r � q, de�nes a relabeling, denoted w0 = �(w), where label j in w is replaced by �(j).Let u and w be two labeled structures of respective sizes m and n. The partitional productof u and v is denoted by u � v, and it consists of the set of all possible relabelings (u0; v0)of (u; v) so that (u0; v0) = ��1(u); �2(v)�, where �1 : f1; 2; : : : ;mg ! f1; 2; : : : ;m + ng,�2 : f1; 2; : : : ; ng ! f1; 2; : : : ;m+ ng satisfy the following:1. �1 and �2 are monotone increasing functions. (This preserves the order structure of uand v.)2. The ranges of �1 and �2 are disjoint and cover the set f1; 2; : : : ;m+ ng.

www.manaraa.com

Section 1.3. Exponential Generating Functions / 11The partitional product of two classes U and V is denoted W = U � V and is the union ofall u � v, for u 2 U and v 2 V.Theorem 4 [Sum/Product theorem for labeled structures]. The disjoint union andpartitional product over labeled structures are admissible for EGFs:W = U [V; with U \ V = ; =) cW (z) = bU(z) + bV (z);W = U � V =) cW (z) = bU(z)bV (z):Proof. Obvious for unions. For products, observe thatWq = X0�m�q� qm�UmVq�m; (12)since the binomial coe�cient counts the number of partitions of f1; 2; : : : ; qg into two setsof cardinalities m and q �m. Dividing by q! we getWqq! = X0�m�q Umm! Vq�m(q �m)! :The partitional complex of U is denoted U h�i. It is analogous to the sequence classconstruction and is de�ned byU h�i = f�g+ U + (U � U) + (U � U � U) + � � � ;and its EGF is �1 � bU(z)��1. The kth partitional power of U is denoted U hki. Theabelian partional power, denoted U [k], is the collection of all sets f�1; �2; : : : ; �kg such that(�1; �2; : : : ; �k) 2 U hki. In other words, the order of components is not taken into account.We can write symbolically U [k] = 1k!U hki so that the EGF of U [k] is 1k! bU hki(z). The abelianpartitional complex of U is de�ned analogously to the powerset construction:U [�] = f�g+ U + U [2] + U [3] + � � � :Theorem 5. The partitional complex and abelian partitional complex are admissible forEGFs: W = U h�i =) cW (z) = 11� bU(z) ;W = U [�] =) cW (z) = ebU(z): (13)Examples. 1. Permutations and Cycles. Let P be the class of all permutations, and let Cbe the class of circular permutations (or cycles). By Theorem 5, we have bP (z) = (1� z)�1and Pn = n!. Since any permutation decomposes into an unordered set of cycles, we haveP = C[�], so that bC(z) = log�1=(1� z)� and Cn = (n� 1)!. This construction also showsthat the EGF for permutations having k cycles is logk�1=(1� z)�, whose nth coe�cient issn;k=n!, where sn;k is a Stirling number of the �rst kind.

www.manaraa.com

12 / Average-Case Analysis of Algorithms and Data StructuresLet Q be the class of permutations without cycles of size 1 (that is, without �xedpoints). Let D be the class of cycles of size at least 2. We have D [f(1)g = C, and hencebD(z) + z = bC(z), bD(z) = log(1� z)�1 � z. Thus, we havebQ(z) = ebD(z) = e�z1� z : (14)Similarly, the generating function for the class I of involutions (permutations with cyclesof lengths 1 and 2 only) is bI(z) = ez+z2=2: (15)2. Labeled graphs. Let G be the class of all labeled graphs, and let K be the class ofconnected labeled graphs. Then Gn = 2n(n�1)=2, and bK(z) = log bG(z), from which we canprove that Kn=Gn ! 1, as n!1.3. Occupancies and Set Partitions. We de�ne the urn of size n, for n � 1, to bethe structure formed from the unordered collection of the integers f1; 2; : : : ; ng; the urnof size 0 is de�ned to be the empty set. Let U denote the class of all urns; we havebU(z) = ez. The class U hki represents all possible ways of throwing distinguishable ballsinto k distinguishable urns, and its EGF is ekz , so that as anticipated we have U hkin = kn.Similarly, the generating function for the number of ways of throwing n balls into k urns,no urn being empty, is (ez � 1)k, and thus the number of ways is n! [zn] (ez � 1)k, whichis equal to k!Sn;k, where Sn;k is a Stirling number of the second kind.If S = V [�], where V is the class of nonempty urns, then an element of S of size ncorresponds to a partition of the set f1; 2; : : : ; ng into equivalence classes. The number ofsuch partitions is a Bell number �n = n! [zn] exp(ez � 1): (16)In the same vein, the EGF of surjections S = Vh�i (surjective mappings from f1; 2; : : : ; ngonto an initial segment f1; 2; : : : ;mg of the integers, for some 1 � m � n) isbS(z) = 11� (ez � 1) = 12� ez : (17)For labeled structures, we can also de�ne marking and composition constructions thattranslate into EGFs. Greene [1983] has de�ned a useful boxing operator : C = A �B denotesthe subset of A�B obtained by retaining only pairs (u; v) 2 A�B such that label 1 is in u.This construction translates into the EGFbC(z) = Z z0 bA0(t) bB(t) dt:

www.manaraa.com

Section 1.4. From Generating Functions to Counting / 131.4. From Generating Functions to CountingIn the previous section we saw how generating function equations can be written directlyfrom structural de�nitions of combinatorial objects. We discuss here how to go from thefunctional equations to exact counting results, and then indicate some extensions of thesymbolic method to multivariate generating functions.Direct Expansions from generating functions. When a GF is given explicitly as theproduct or composition of known GFs, we often get an explicit form for the coe�cientsof the GF by using classical rules for Taylor expansions and sums. Examples related toprevious calculations are the Catalan numbers (2), derangement numbers (14), and Bellnumbers (16):[zn] 1p1� 4z = �2nn �; [zn] e�z1� z = X0�k�n (�1)kk! ; [zn] exp(ez � 1) = e�1Xk�0 knk! :Another method for obtaining coe�cients of implicitly de�ned GFs is the method of inde-terminate coe�cients. If the coe�cients of f(z) are sought, we translate over coe�cientsthe functional relation for f(z). An important subcase is that of a �rst-order linear recur-rence fn = an + bnfn�1, whose solution can be found by iteration or summation factors:fn = an + bnan�1 + bnbn�1an�2 + bnbn�1bn�2an�3 + � � � : (18)Solution Methods for Functional Equations. Algebraic equations over GFs may besolved explicitly if of low degree, and the solutions can then be expanded (see the Catalannumbers (2d) in Section 1.1). For equations of higher degrees and some transcendentalequations, the Lagrange-B�urmann inversion formula is useful:Theorem 6 [Lagrange-B�urmann inversion formula]. Let f(z) be de�ned implicitly bythe equation f(z) = z '�f(z)�, where '(u) is a series with '(0) 6= 0. Then the coe�-cients of f(z), its powers f(z)k, and an arbitrary composition g�f(z)� are related to thecoe�cients of the powers of '(u) as follows:[zn] f(z) = 1n [un�1]'(u)n; (19a)[zn] f(z)k = kn [un�k]'(u)n; (19b)[zn] g�f(z)� = 1n [un�1]'(u)ng0(u): (19c)Examples. 1. Abel identities. By (19a), f(z) = Pn�1 nn�1zn=n! is the expansion off(z) = zef(z). By taking coe�cients of e�f(z)e�f(z) = e(�+�)f(z) we get the Abel identity(�+ �)(n+ �+ �)n�1 = �� Xk �nk�(k + �)k�1(n� k + �)n�k�1:2. Ballot numbers. Letting b(z) = z+ zb2(z) (which is related to B(z) de�ned in (2b)by b(z) = zB(z2), see also Section 4.1) and '(u) = 1 + u2, we �nd that [zn]Bk(z) =k2n+k �2n+kn � (these are the ballot numbers).

www.manaraa.com

14 / Average-Case Analysis of Algorithms and Data StructuresDi�erential equations occur especially in relation to binary search trees, as we shallsee in Section 4.2. For the �rst-order linear di�erential equation ddz f(z) = a(z)+ b(z)f(z),the variation of parameter (or integration factor) method gives us the solutionf(z) = eB(z) Z zz0 a(t)e�B(t) dt; where B(z) = Z z0 b(u) du: (20)The lower bound z0 is chosen to satisfy the initial conditions on f(z).For other functional equations, iteration (or bootstrapping) may be useful. Forexample, under suitable (formal or analytic) convergence conditions, the solution tof(z) = a(z) + b(z)f�(z)� isf(z) =Xk�0�a�((k))(z)� Y0�j�k�1 b�((j))(z)��; (21)where ((k))(z) denotes the kth iterate ((� � � ((z)) � � �)) of (z) (cf. Eq. (18)).In general, the whole arsenal of algebra can be used on generating functions; themethods above represent only the most commonly used techniques. Many equations stillescape exact solution, but asymptotic methods based upon complex analysis can often beused to extract asymptotic information about the GF coe�cients.Multivariate generating functions. If we need to count structures of size n with acertain combinatorial characteristic having value k, we can try to treat k as a parameter(see the examples above with Stirling numbers). Let gn;k be the corresponding countingsequence. We may also consider bivariate generating functions, such asG(u; z) = Xn;k�0 gn;kukzn or G(u; z) = Xn;k�0 gn;kuk znn! :Extensions of previous translation schemes exist (see [Goulden 1983]). For instance, forthe Stirling numbers sn;k and Sn;k, we haveXn;k�0 sn;k uk znn! = exp�u log(1� z)�1� = (1� z)�u; (22a)Xn;k�0Sn;k k!uk znn! = 11� u(ez � 1) : (22b)Multisets. An extension of the symbolic method to multisets is carried out in [Flajo-let 1981]. Consider a class S of structures and for each � 2 S a \multiplicity" �(�).The pair (S; �) is called a multiset, and its generating function is by de�nition S(z) =P�2S �(�)zj�j so that Sn = [zn]S(z) is the cumulated value of � over all structures ofsize n. This extension is useful for obtaining generating functions of expected (or cumu-lated) values of parameters over combinatorial structures, since translation schemes basedupon admissible constructions also exist for multisets. We shall encounter such extensionswhen analyzing Shellsort (Section 3.3), trees (Section 4), and hashing (Section 5.1).

www.manaraa.com

Section 2.1. Generalities / 152. Asymptotic MethodsIn this section, we start with elementary asymptotic methods. Next we present complexasymptotic methods, based upon singularity analysis and saddle point integrals, whichallow in most cases a direct derivation of asymptotic results for coe�cients of generat-ing functions. Then we introduce Mellin transform techniques that permit asymptoticestimations of a large class of combinatorial sums, especially those involving certain arith-metic and number-theoretic functions. We conclude by a discussion of (asymptotic) limittheorems for probability distributions.2.1. GeneralitiesWe briey recall in this subsection standard real analysis techniques and then discusscomplex analysis methods.Real Analysis. Asymptotic evaluation of the most elementary counting expressions maybe done directly, and a useful formula is this regard is Stirling's formula:n! � p2�n�ne �n �1 + 112n + 1288n2 � 13951840n3 � � � ��: (1)For instance, the central binomial coe�cient satis�es �2nn � = (2n)!=n!2 � 4n=p�n.The Euler-Maclaurin summation formula applies when an expression involves a sumat regularly spaced points (a Riemann sum) of a continuous function: such a sum isapproximated by the corresponding integral, and the formula provides a full expansion.The basic form is the following:Theorem 1 [Euler-Maclaurin summation formula]. If g(x) is C1 over [0; 1], then forany integer m, we haveg(0) + g(1)2 � Z 10 g(x) dx =X1�j�m�1 B2j(2j)!�g(2j�1)(1)� g(2j�1)(0)�� Z 10 g(2m)(x)B2m(x)(2m)! dx; (2a)where Bj(x) � j! [zj] zexz=(ez�1) is a Bernoulli polynomial, and Bj = Bj(1) is a Bernoullinumber.We can derive several formul� by summing (2a). If fxg denotes the fractional partof x, we haveX0�j�n g(j)� Z n0 g(x) dx = 12g(0) + 12g(n) + X1�j�m�1 B2j(2j)!�g(2j�1)(n)� g(2j�1)(0)�� Z n0 g(2m)(x)B2m(fxg)(2m)! dx; (2b)

www.manaraa.com

16 / Average-Case Analysis of Algorithms and Data Structureswhich expresses the di�erence between a discrete sum and its corresponding integral. Bya change of scale, for h small, setting g(x) = f(hx), we obtain the asymptotic expansionof a Riemann sum, when the step size h tends to 0:X0�jh�1 f(jh) � 1h Z 10 f(x) dx+ f(0) + f(1)2+Xj�1 B2jh2j�1(2j)! �f (2j�1)(1)� f (2j�1)(0)�: (2c)Examples. 1. The harmonic numbers are de�ned by Hn = 1+ 12 + 13 + � � �+ 1n , and theysatisfy Hn = logn+ + 12n + � � �.2. The binomial coe�cient � 2nn�k�, for k < n2=3, is asymptotically equal to the cen-tral coe�cient �2nn � times exp(�k2=n), which follows from estimating its logarithm. ThisGaussian approximation is a special case of the central limit theorem of probability theory.Laplace's method for sums is a classical approach for evaluating sums Sn =Pk f(k; n)that have a dominant term. First we determine the rank k0 of the dominant term. Wecan often show for \smooth" functions f(k; n) that f(k; n) � f(k0; n)��(k � k0)h�, withh = h(n) small (like 1=pn or 1=n). We conclude by applying the Euler-Maclaurin sum-mation to �(x). An example is the asymptotics of the Bell numbers de�ned in (1.16) [DeBruijn 1981, page 108] or the number of involutions (1.15) [Knuth 1973, page 65]. Thereare extensions to multiple sums involving multivariate Euler-Maclaurin summations.Complex Analysis. A powerful method (and one that is often computationally simple)is to use complex analysis to go directly from a generating function to the asymptotic formof its coe�cients. For instance, the EGF for the number of 2{regular graphs [Comtet 1974,page 273] is f(z) = e�z=2�z2=4p1� z ; (3)and [zn]f(z) is sought. A bivariate Laplace method is feasible. However, it is simpler tonotice that f(z) is analytic for complex z, except when z = 1. There a \singular expansion"holds: f(z) � e�3=4p1� z ; as z ! 1. (4a)General theorems that we are going to discuss in the next section let us \transfer" anapproximation (4a) of the function to an approximation of the coe�cients:[zn]f(z) � [zn] e�3=4p1� z : (4b)Thus, [zn]f(z) � e�3=4(�1)n��1=2n � � e�3=4=p�n.

www.manaraa.com

Section 2.2. Singularity Analysis / 172.2. Singularity AnalysisA singularity is a point at which a function ceases to be analytic. A dominant singularityis one of smallest modulus. It is known that a function with positive coe�cients that isnot entire always has a dominant positive real singularity. In most cases, the asymptoticbehavior of the coe�cients of the function is determined by that singularity.Location of singularities. The classical exponential-order formula relates the locationof singularities of a function to the exponential growth of its coe�cients.Theorem 2 [Exponential growth formula]. If f(z) is analytic at the origin and hasnonnegative coe�cients, and if � is its smallest positive real singularity, then its coe�cientsfn = [zn]f(z) satisfy (1� �)n��n <i:o: fn <a:e: (1 + �)n��n; (5)for any � > 0. Here \ i.o." means in�nitely often (for in�nitely many values) and \ a.e."means \almost everywhere" (except for �nitely many values).Examples. 1. Let f(z) = 1= cos(z) (EGF for \alternating permutations") and g(z) =1=(2� ez) (EGF for \surjections"). Then bounds (5) apply with � = �=2 and � = log 2,respectively.2. The solution f(z) of the functional equation f(z) = z + f(z2 + z3) is the OGF of2-3 trees [Odlyzko 81]. Setting �(z) = z2 + z3, the functional equation has the followingformal solution, obtained by iteration (see Eq. (1.21)):f(z) = Xm�0�((m))(z); (6a)where �((m))(z) is the mth iterate of �(z). The sum in (6a) converges geometrically whenjzj is less than the smallest positive root � of the equation � = �(�), and it becomes in�niteat z = �. The smallest possible root is � = 1=�, where � is the golden ratio (1 + p5)=2.Hence, we have 1 +p52 !n (1� �)n <i:o: [zn] f(z) <a:e: 1 +p52 !n (1 + �)n: (6b)The bound (6b) and even an asymptotic expansion [Odlyzko 81] are obtainable without anexplicit expression for the coe�cients. See Theorem 4.7.Nature of singularities. Another way of expressing Theorem 2 is as follows: we havefn � �(n)��n, where the subexponential factor �(n) is i.o. larger than any decreasingexponential and a.e. smaller than any increasing exponential. Common forms for �(n) aren� log� n, for some constants � and �. The subexponential factors are usually related tothe growth of the function around its singularity. (The singularity may be taken equal to 1by normalization.)

www.manaraa.com

18 / Average-Case Analysis of Algorithms and Data StructuresMethod [Singularity analysis]. Assume that f(z) has around its dominant singularity 1an asymptotic expansion of the formf(z) = �(z) + R(z); with R(z)� �(z); as z ! 1; (7a)where �(z) is in a standard set of functions that include (1� z)a logb(1� z), for constantsa and b. Then under general conditions Eq. (7a) leads to[zn]f(z) = [zn]�(z) + [zn]R(z); with [zn]R(z)� [zn]�(z); as n!1: (7b)Applications of this principle are based upon a variety of conditions on function f(z)or R(z), giving rise to several methods:1. Transfer methods require only growth information on the remainder term R(z), butthe approximation has to be established for z ! 1 in some region of the complex plane.Transfer methods largely originate in [Odlyzko 1982] and are developed systematicallyin [Flajolet and Odlyzko 1989].2. Tauberian theorems assume only that Eq. (7a) holds when z is real and less than 1(that is, as z ! 1�), but they require a priori Tauberian side conditions (positivity,monotonicity) to be satis�ed by the coe�cients fn and are restricted to less generaltypes of growth for R(z). (See [Feller 1971, page 447] and [Greene and Knuth 1982,page 52] for a combinatorial application.)3. Darboux's method assumes smoothness conditions (di�erentiability) on the remainderterm R(z) [Henrici 1977, page 447].Our transfer method approach is the one that is easiest to apply and the most exiblefor combinatorial enumerations. First, we need the asymptotic growth of coe�cients ofstandard singular functions. For �(z) = (1 � z)�s, where s > 0, by Newton's expan-sion the nth coe�cient in its Taylor expansion is �n+s�1n �, which is � ns�1=�(s). Formany standard singular functions, like (1� z)�1=2 log2(1� z)�1, we may use either Euler-Maclaurin summation on the explicit form of the coe�cients or contour integration to �nd�n � (�n)�1=2 log2 n. Next we need to \transfer" coe�cients of remainder terms.Theorem 3 [Transfer lemma]. If R(z) is analytic for jzj < 1 + � for some � > 0 (withthe possible exception of a sector around z = 1, where jArg(z � 1)j < � for some � < �2)and if R(z) = O�(1� z)r� as z ! 1 for some real r, then[zn]R(z) = O�n�r�1�: (8b)The proof proceeds by choosing a contour of integration made of part of the circlejzj = 1+� and the boundary of the sector, except for a small notch of diameter 1=n aroundz = 1. Furthermore, when r � �1, we need only assume that the function is analytic forjzj � 1, z 6= 1.Examples. 1. The EGF f(z) of 2{regular graphs is given in Eq. (3). We can expand theexponential around z = 1 and getf(z) = e�z=2�z2=4p1� z = e�3=4(1� z)�1=2 +O((1� z)1=2); as z ! 1. (9a)

www.manaraa.com

Section 2.2. Singularity Analysis / 19The function f(z) is analytic in the complex plane slit along z � 1, and Eq. (9a) holdsthere in the vicinity of z = 1. Thus, by the transfer lemma with r = 12 , we have[zn]f(z) = e�3=4�n� 12n �+ O(n�3=2) = e�3=4p� n�1=2 +O(n�3=2): (9b)2. The EGF of surjections was shown in (1.17) to be f(z) = (2� ez)�1. It is analyticfor jzj � 3, except for a simple pole at z = log 2, where local expansions show thatf(z) = 12 log 2 � 11� z= log 2 + O(1); as z ! log 2; (10a)so that [zn]f(z) = 12 � 1log 2�n+1 �1 + O� 1n�� : (10b)3. A functional equation. The OGF of certain trees [Polya 1937] f(z) = 1 + z + z2 +2z3 + � � � is known only via the functional equationf(z) = 11� zf(z2) :It can be checked that f(z) is analytic at the origin. Its dominant singularity is a simplepole � < 1 determined by cancellation of the denominator, �f(�2) = 1. Around z = � =0:59475 : : :, we havef(z) = 1�f(�2)� zf(z2) = 1c(�� z) +O(1); with c = ddz zf(z2)����z=�: (11a)Thus, with K = (c�)�1 = 0:36071, we �nd that[zn]f(z) = K��n�1 +O� 1n�� : (11b)More precise expansions exist for coe�cients of meromorphic functions (functions withpoles only), like the ones in the last two examples (for example, see [Knuth 1973, 5.3.1{3,4],[Henrici 1977], and [Flajolet and Odlyzko 1989]). For instance, the error of approxima-tion (11b) is less than 10�15 when n = 100. Finally, the OGF of 2{3 trees (6a) is amenableto transfer methods, though extraction of singular expansions is appreciably more di�cult[Odlyzko 1982].We conclude this subsection by citing the lemma at the heart of Darboux's method[Henrici 1977, page 447] and a classical Tauberian Theorem [Feller 1971, page 447].Theorem 4 [Darboux's method]. If R(z) is analytic for jzj < 1, continuous for jzj � 1,and d times continuously di�erentiable over jzj = 1, then[zn]R(z) = o� 1nd� : (12)For instance, if R(z) = (1 � z)5=2H(z), where H(z) is analytic for jzj < 1 + �, thenwe can use d = 2 for Theorem 4 and obtain [zn]R(z) = o(1=n2). The theorem is usuallyapplied to derive expansions of coe�cients of functions of the form f(z) = (1� z)rH(z),with H(z) analytic in a larger domain than f(z). Such functions can however be treateddirectly by transfer methods (Theorem 3).

www.manaraa.com

20 / Average-Case Analysis of Algorithms and Data StructuresTheorem 5 [Tauberian theorem of Hardy{Littlewood{Karamata]. Assume that the func-tion f(z) =Pn�0 fnzn has radius of convergence 1 and satis�es for real z, 0 � z < 1,f(z) � 1(1� z)s L� 11� z� ; as z ! 1�, (13a)where s > 0 and L(u) is a function varying slowly at in�nity, like logb(u). If ffngn�0 ismonotonic, then fn � ns�1�(s) L(n): (13b)An application to the function f(z) =Qk(1+ zkk) is given in [Greene and Knuth 1982,page 52]; the function represents the EGF of permutations with distinct cycle lengths.That function has a natural boundary at jzj = 1 and hence is not amenable to Darbouxor transfer methods.Singularity analysis is used extensively in Sections 3{5 for asymptotics related tosorting methods, plane trees, search trees, partial match queries, and hashing with linearprobing.2.3. Saddle Point MethodsSaddle point methods are used for extracting coe�cients of entire functions (which areanalytic in the entire complex plane) and functions that \grow fast" around their dominantsingularities, like exp�1=(1� z)�. They also play an important rôle in obtaining limitdistribution results and exponential tails for discrete probability distributions.A Simple Bound. Assume that f(z) = Pn fnzn is entire and has positive coe�cients.Then by Cauchy's formula, we havefn = 12�i Z� f(z)zn+1 dz: (14)We refer to (14) as a Cauchy coe�cient integral. If we take as contour � the circle jzj = R,we get an easy upper bound fn � f(R)Rn ; (15)since the maximum value of jf(z)j, for jzj = R, is f(R). The bound (15) is valid forany R > 0. In particular, we have fn � minR>0ff(R)R�ng. We can �nd the minimumvalue by setting ddR�f(R)R�n� = �f 0(R)�f(R)(nR)�R�n = 0, which gives us the followingbound:Theorem 6 [Saddle point bound]. If f(z) is entire and has positive coe�cients, then forall n, we have [zn]f(z) � f(R)Rn ; (16)

www.manaraa.com

Section 2.3. Saddle Point Methods / 21where R = R(n) is the smallest positive real number such thatRf 0(R)f(R) = n: (17)Complete Saddle Point Analysis. The saddle point method is a re�nement of thetechnique we used to derive (15). It applies in general to integrals depending upon a largeparameter, of the form I = 12�i Z� eh(z) dz: (18a)A point z = � such that h0(z) = 0 is called a saddle point owing to the topography ofjeh(z)j around z = �: There are two perpendicular directions at z = �, one along whichthe integrand jeh(z)j has a local minimum at z = �, and the other (called the axis of thesaddle point) along which the integrand has a local maximum at z = �. The principlesteps of the saddle point method are as follows:1. Show that the contribution of the integral is asymptotically localized to a fraction ��of the contour around z = � traversed along its axis. (This forces � to be not toosmall.)2. Show that over this subcontour, h(z) is suitably approximated by h(�)+ (z��)22 h00(�).(This imposes a conicting constraint that � should not be too large.)If points 1 and 2 can be established, then I can be approximated byI � 12�i Z�� exp�h(�) + (z � �)22 h00(�)� dz � eh(�)p2�h00(�) : (18b)Classes of functions such that the saddle point estimate (18b) applies to Cauchy coe�-cient integrals (14) are called admissible and have been described by several authors [Hay-man 1956], [Harris and Schoenfeld 1968], [Odlyzko and Richmond 1985]. Cauchy coe�cientintegrals (14) can be put into the form (18a), where h(z) = hn(z) = log f(z)� (n+1) log z,and a saddle point z = R is a root of the equation h0(z) = ddz �log f(z) � (n+ 1) log z� =f 0(z)=f(z)� (n+ 1)=z = 0. By the method of (18) we get the following estimate:Theorem 7 [Saddle point method for Cauchy coe�cient integrals]. If f(z) has positivecoe�cients and is in a class of admissible functions, thenfn � f(R)p2�C(n)Rn+1 ; with C(n) = d2dz2 log f(z)����z=R + (n+ 1)R�2; (19)where the saddle point R is the smallest positive real number such thatRf 0(R)f(R) = n+ 1: (20)Examples. 1. We get Stirling's formula (1) by letting f(z) = ez. The saddle point isR = (n+ 1), and by Theorem 7 we have1n! = [zn] ez � en+1p2�=(n+ 1) (n+ 1)n+1 � 1p2�n � en�n :

www.manaraa.com

22 / Average-Case Analysis of Algorithms and Data Structures2. By (1.15), the number of involutions is given byIn = n! [zn] ez+z2=2 = n!2�i Z� ez+z2=2zn+1 dz;and the saddle point is R = pn+ 1=2 + 5=(8pn) + � � �. We choose � = n�2=5, so that forz = Rei�, we have (z �R)2h00(R)!1 while (z �R)3h000(R)! 0. Thus,Inn! � e3=42p�n�n=2en=8:The asymptotics of the Bell numbers can be done in the same way [De Bruijn 1981,page 104].3. A function with a �nite singularity. For f(z) = ez=(1�z), Theorem 7 gives usfn � [zn] exp� z1� z� � C edpnn� : (21)A similar method can be applied to the integer partition function p(z) =Qn�1(1� zn)�1though it has a natural boundary, and estimates (21) are characteristic of functions whoselogarithm has a pole{like singularity.Specializing some of Hayman's results, we can de�ne inductively a classH of admissiblefunctions as follows: (i) If p(z) denotes an arbitrary polynomial with positive coe�cients,then ep(z) 2 H. (ii) If f(z) and g(z) are arbitrary functions of H, then ef(z), f(z) � g(z),f(z) + p(z), and p(f(z)) are also in H.Several applications of saddle point methods appear in Section 5.1 in the analysis ofmaximum bucket occupancy, extendible hashing, and coalesced hashing.2.4. Mellin TransformsThe Mellin transform, a tool originally developed for analytic number theory, is usefulfor analyzing sums where arithmetic functions appear or nontrivial periodicity phenomenaoccur. Such sums often present themselves as expectations of combinatorial parameters orgenerating functions.Basic Properties. Let f(x) be a function de�ned for real x � 0. Then its Mellin trans-form is a function f�(s) of the complex variable s de�ned byf�(s) = Z 10 f(x)xs�1 dx: (22)If f(x) is continuous and is O(x�) as x! 0 and O(x�) as x!1, then its Mellin transformis de�ned in the \fundamental strip" �� < <(s) < ��, which we denote by h��;��i.For instance the Mellin transform of e�x is the well{known Gamma function �(s), with

www.manaraa.com

Section 2.4. Mellin Transforms / 23fundamental strip h0;+1i, and the transform of Pn�k(�x)n=n!, for k > 0, is �(s) withfundamental strip h�k;�k + 1i. There is also an inversion theorem �a la Fourier:f(x) = 12�i Z c+i1c�i1 f�(s)x�s ds; (23)where c is taken arbitrarily in the fundamental strip.The important principle for asymptotic analysis is that under the Mellin transform,there is a correspondence between terms of asymptotic expansions of f(x) at 0 (respec-tively, +1) and singularities of f�(s) in a left (respectively, right) half-plane. To see whythis is so, assume that f�(s) is small at �i1 and has only polar singularities. Then, we canclose the contour of integration in (23) to the left (for x! 0) or to the right for (x!1)and derive by Cauchy's residue formulaf(x) = +X� Res �f�(s)x�s; s = ��+ O(x�d); as x! 0.f(x) = �X� Res �f�(s)x�s; s = ��+ O(x�d); as x!1. (24)The sum in the �rst equation is extended to all poles � where d � <(�) � ��; the sum inthe second equation is extended to all poles � with �� � <(�) � d. Those relations havethe character of asymptotic expansions of f(x) at 0 and +1: We observe that if f�(s) hasa kth-order pole at �, then a residue in (24) is of the form Qk�1(logx)x��, where Qk�1(u)is a polynomial of degree k � 1.There is �nally an important functional property of the Mellin transform: If g(x) =f(�x), then g�(s) = ��sf�(s). Hence, transforms of sums called \harmonic sums" decom-pose into the product of a generalized Dirichlet series P�k�sk and the transform f�(s) ofthe basis function:F (x) =Xk �kf(�kx) =) F �(s) = �Xk �k��sk �f�(s): (25)Asymptotics of Sums. The standard usage of Mellin transforms devolves from a com-bination of Eqs. (24) and (25):Theorem 8 [Mellin asymptotic summation formula]. Assume that in (25) the trans-form f�(s) of f(x) is exponentially small towards �i1 with only polar singularities andthat the Dirichlet series is meromorphic of �nite order. Then the asymptotic behavior ofa harmonic sum F (x) =Pk �kf(�kx), as x! 0 (respectively, x!1), is given byXk �kf(�kx) � �X� Res �Xk �k��sk �f�(s)x�s ; s = �! : (26)For an asymptotic expansion of the sum as x ! 0 (respectively, as x ! 1), the signin (26) is \+" (respectively, \�"), and the sum is taken over poles to the left (respectively,to the right) of the fundamental strip.

www.manaraa.com

24 / Average-Case Analysis of Algorithms and Data StructuresExamples. 1. An arithmetical sum. Let F (x) be the harmonic sum Pk�1 d(k)e�k2x2 ,where d(k) is the number of divisors of k. Making use of (25) and the fact that thetransform of e�x is �(s), we haveF �(s) = 12��s2�Xk�1 d(k)k�s = 12�� s2� �2(s); (27a)where �(s) =Pn�1 n�s. Here F �(s) is de�ned in the fundamental strip h1;+1i. To theleft of this strip, it has a simple pole at s = 0 and a double pole at s = 1. By expanding�(s) and �(s) around s = 0 and s = 1, we get for any d > 0F (x) = �p�2 log xx + �34 � log 22 � p�x + 14 +O(xd); as x! 0. (27b)2. A sum with hidden periodicities. Let F (x) be the harmonic sumPk�0(1�e�x=2k).The transform F �(s) is de�ned in the fundamental strip h�1; 0i, and by (25) we �ndF �(s) = ��(s)Xk�0 2ks = � �(s)1� 2s : (28a)The expansion of F (x) as x ! 1 is determined by the poles of F �(s) to the right ofthe fundamental strip. There is a double pole at s = 0 and the denominator of (28a)gives simple poles at s = �k = 2k�i= log 2, for k 6= 0. Each simple pole �k contributes auctuating term x��k = exp(2k�i log2 x) to the asymptotic expansion of F (x). Collectinguctuations, we haveF (x) = log2 x+ P (log2 x) + O(x�d); as x!1, (28b)where P (u) is a periodic function with period 1 and a convergent Fourier expansion.Mellin transforms are the primary tool to study tries and radix exchange sort (Sec-tion 4.3). They are also useful in the study of certain plane tree algorithms (Section 4.1),bubble sort (Section 3.4), and interpolation search and extendible hashing (Section 5.1).

www.manaraa.com

Section 2.5. Limit Probability Distributions / 252.5. Limit Probability DistributionsGeneral references for this section are [Feller 1971] and [Billingsley 1986]. We re-call that if X is a real-valued random variable (RV), then its distribution function isF (x) = PrfX � xg, and its mean and variance are �X = X = EfXg and �2X = var(X) =EfX2g � (EfXg)2, respectively. The kth moment of X is Mk = EfXkg. We have�X+Y = �X + �Y , and when X and Y are independent, we have �2X+Y = �2X + �2Y .For a nonnegative integer-valued RV, its probability generating function (PGF) is de�nedby p(z) = Pk�0 pkzk, where pk = PrfX = kg; the mean and variance are respectively� = p0(1) and �2 = p00(1)+p0(1)��p0(1)�2. It is well known that the PGF of a sum of inde-pendent RVs is the product of their PGFs, and conversely, a product of PGFs correspondsto a sum of independent RVs.A problem that naturally presents itself in the analysis of algorithms is as follows:Given a class C of combinatorial structures (such as trees, permutations, etc.), with X�n a\parameter" over structures of size n (path length, number of inversions, etc.), determinethe limit (asymptotic) distribution of the normalized variable Xn = (X�n � �X�n)=�X�n .Simulations suggest that such a limit does exist in typical cases. The limit distributionusually provides more information than does a plain average-case analysis. The followingtwo transforms are important tools in the study of limit distributions:1. Characteristic functions (or Fourier transforms), de�ned for RV X by�(t) = EfeitXg = Z +1�1 eitx dF (x): (29)For a nonnegative integer-valued RV X, we have �(t) = p(eit).2. Laplace transforms, de�ned for a nonnegative RV X byg(t) = Efe�tXg = Z +10 e�tx dF (x): (30)The transform g(�t) is sometimes called the \moment generating function" of X sinceit is essentially the EGF of X's moments. For a nonnegative integer-valued RV X, wehave g(t) = p(e�t).Limit Theorems. Under appropriate conditions the distribution functions Fn(x) of asequence of RVs Xn converge pointwise to a limit F (x) at each point of continuity of F (x).Such convergence is known as \weak convergence" or \convergence in distribution," andwe denote it by F = limFn [Billingsley 1986].Theorem 9 [Continuity theorem for characteristic functions]. Let Xn be a sequenceof RVs with characteristic functions �n(t) and distribution functions Fn(x). If there is afunction �(t) continuous at the origin such that lim�n(t) = �(t), then there is a distributionfunction F (x) such that F = limFn. Function F (x) is the distribution function of the RVwith characteristic function �(t).Theorem 10 [Continuity theorem for Laplace transforms]. Let Xn be a sequence of RVswith Laplace transforms gn(t) and distribution functions Fn(x). If there is some a such that

www.manaraa.com

26 / Average-Case Analysis of Algorithms and Data Structuresfor all jtj � a there is a limit g(t) = lim gn(t), then there is a distribution function F (x)such that F = limFn. Function F (x) is the distribution function of the RV with Laplacetransform g(t).Similar limit conditions exist when the moments of the Xn converge to the momentsof a RV X, provided that the \moment problem" for X has a unique solution. A su�cientcondition for this is Pj�0EfX2jg�1=(2j) = +1.Generating functions. If the Xn are nonnegative integer-valued RVs, then they de�ne asequence pn;k = PrfXn = kg, and the problem is to determine the asymptotic behavior ofthe distributions �n = fpn;kgk�0 (or the associated cumulative distribution functions Fn),as n!1. In simple cases, such as binomial distributions, explicit expressions are availableand can be treated using the real analysis techniques of Section 2.1.In several cases, either the \horizontal" GFs pn(u) or \vertical" GFs qk(z)pn(u) = 1Xk=0 pn;kuk; qk(z) = 1Xn=0 pn;kzn; (31)have explicit expressions, and complex analysis methods can be used to extract theircoe�cients asymptotically.Sometimes, only the bivariate generating functionP (u; z) = Xn;k�0 pn;kukzn (32)has an explicit form, and a two-stage method must be employed.Univariate Problems. The most well known application of univariate techniques is thecentral limit theorem. If Xn = A1 + � � � + An is the sum of independent identically dis-tributed RVs with mean 0 and variance 1, then Xn=pn tends to a normal distribution withunit variance. The classical proof [Feller 1971, page 515] uses characteristic functions: thecharacteristic function of Xn=pn is �n(t) = �n(t=pn), where �(t) is the characteristicfunction of each Aj , and it converges to e�t2=2, the characteristic function of the normaldistribution.Another proof that provides information on the rate of convergence and on densitieswhen the Aj are nonnegative integer-valued uses the saddle point method applied toPrfXn = kg = 12�i I p(z)nzk+1 dz; (33)where p(z) is the PGF of each Aj [Greene and Knuth 1982].A general principle is that univariate problems can be often solved using either con-tinuity theorems or complex asymptotics (singularity analysis or saddle point) applied tovertical or horizontal generating functions.Examples. 1. A horizontal generating function. The probability that a random permu-tation of n elements has k cycles is [uk] pn(u), wherepn(u) = 1n!u(u+ 1)(u+ 2) : : : (u+ n� 1):

www.manaraa.com

Section 2.5. Limit Probability Distributions / 27Like for the basic central limit theorem above, either characteristic functions or saddlepoint methods can be used to establish normality of the limiting distribution as n ! 1(Goncharov's theorem). The same normality result holds for the distribution of inversionsin permutations, for which pn(u) = 1n! Y1�j�n 1� uj1� u :Inversions will be studied in Section 3.1 in connection with sorting.2. A vertical generating function. The probability that a random binary string withlength n has no \1-run" of length k is [zn]qk(z), whereqk(2z) = 1� zk1� 2z + zk+1 :A singularity analysis [Knuth 1978] can be used: the dominant singularity of qk(z) is atz = �k � 1 + 2�k�1, and we have [zn] qk(z) � e�n=2k+1 .Bivariate Problems. For bivariate problems with explicit bivariate GFs (32), the fol-lowing two-stage approach may be useful. First, we can often get a good approximationto the Cauchy coe�cient integralpn(u) = 12�i I P (z; u)zn+1 dzby treating u as a parameter and applying singularity analysis or the saddle point method.Second, if u is real and close to 1 (for example, u = e�t, with t close to 0), we maybe able to conclude the analysis using the continuity theorem for Laplace transforms. Ifu is complex, juj = 1 (that is, u = eit), we try to use instead the continuity theorem forcharacteristic functions. For instance, Bender [1973] and Can�eld [1977] have obtainedgeneral normality results for distributions corresponding to bivariate generating functionsof the form 11� ug(z) and eug(z):These results are useful since they correspond to the distribution of the number of compo-nents in a sequence (or partitional complex) construct and an abelian partitional complexconstruct, respectively.Little is known about bivariate GFs de�ned only implicitly via nonlinear func-tional equations, a notable exception being [Jacquet and R�egnier 1986], [Jacquet andR�egnier 1987]. Finally, other multivariate (but less analytical) techniques are used in theanalysis of random graph models [Bollob�as 1985].

www.manaraa.com

28 / Average-Case Analysis of Algorithms and Data Structures3. Sorting AlgorithmsIn this section we describe several important sorting algorithms, including insertion sort,Shellsort, bubble sort, quicksort, radix-exchange sort, selection sort, heapsort, and mergesort. Some sorting algorithms are more naturally described in an iterative fashion, whilethe others are more naturally described recursively. In this section we analyze the perfor-mance of the \iterative" sorting algorithms in a uni�ed way by using some basic notionsof inversion tables and lattice paths; we apply the combinatorial tools of Section 1 to thestudy of inversions and left-to-right maxima, and we use the techniques of Section 2 toderive asymptotic bounds.We defer the analyses of the sorting algorithms that are more \recursive" in natureuntil Section 4, where we exploit the close connections between their recursive structuresand the tree models studied in Section 4. Yet another class of sorting algorithms, thosebased upon distribution sorting, will be described and analyzed in Section 5.For purposes of average-case analysis of sorting, we assume that the input array (orinput �le) x[1]x[2] : : : x[n] forms a random permutation of the n elements. A permutationof a set of n elements is a 1{1 mapping from the set onto itself. Typically we representthe set of n elements by f1; 2; : : : ; ng. We use the notation � = �1�2 : : : �n to denote thepermutation that maps i to �i, for 1 � i � n. Our input data model is often justi�edin practice, such as when the key values are generated independently from a commoncontinuous distribution.3.1. InversionsThe common thread running through the the analyses of many sorting algorithms is theconnection between the running time of the algorithm and the number of inversions in theinput. An inversion in permutation � is an \out of order" pair (�k; �j) of elements, in whichk < j but �k > �j . The number of inversions is thus a measure of the amount of disorderin a permutation. Let us de�ne the RV In to be the number of inversions; the numberof inversions in a particular permutation � is denoted In[�]. This concept was introducedtwo centuries ago as a means of computing the determinant of a matrix A = (Ai;j):detA = X�2Sn(�1)In[�]A1;�1A2;�2 : : :An;�n ; (1)where Sn denotes the set of n! possible permutations.Definition 1. The inversion table of the permutation � = �1�2 : : : �n is the orderedsequence b1; b2; : : : ; bn; where bk = ��f1 � j < ��1k j �j > kg��: (2a)(Here ��1 denotes the inverse permutation to �; that is, ��1k denotes the index of k in �.)In other words, bk is equal to the number of elements in the permutation � that precede kbut have value > k.The number of inversions can be expressed in terms of inversion tables as follows:In[�] = X1�k�n bk:

www.manaraa.com

Section 3.1. Inversions / 29It is easy see that there is a 1{1 correspondence between permutations and inversion tables.An inversion table has the property that0 � bk � n� k; for each 1 � k � n, (2b)and moreover all such combinations are possible. We can thus view inversion tables as across product Y1�k�nf0; 1; : : : ; n� kg: (2c)We associate each inversion table b1, b2, : : : , bn with the monomial xb1xb2 : : : xbn , and wede�ne the generating functionF (x0; x1; : : : ; xn�1) = X�2Sn xb1xb2 : : : xbn ; (3)which is the sum of the monomials over all n! permutations. By (2b) the possibilitiesfor bk correspond to the term (x0+x1+ � � �+xn�k), and we get the following fundamentalformula, which will play a central rôle in our analyses:Theorem 1. The generating function de�ned in (3) satis�esF (x0; x1; : : : ; xn�1) = x0(x0 + x1) : : : (x0 + x1 + � � �+ xn�1):Theorem 1 is a powerful tool for obtaining statistics related to inversion tables. Forexample, let us de�ne In;k to be the number of permutations of n elements having k in-versions. By Theorem 1, the OGF I(z) =Pk In;kzk is given byIn(z) = z0(z0 + z1)(z0 + z1 + z2) : : : (z0 + z1 + � � �+ zn�1); (4a)since each monomial xb1xb2 : : : xbn in (3) contributes zb1+b2+���+bn to In(z). We can con-vert (4a) into the PGF �n(z) =Pk PrfIn = kgzk by dividing by jSnj = n!:�n(z) =Xk In;kn! zk = Y1�k�n bk(z); where bk(z) = z0 + z1 + � � �+ zn�kn� k + 1 : (4b)The expected number of inversions In and the variance var(In) are thus equal toIn = �0n(1) = n(n� 1)4 ; (4c)var(In) = �00n(1) + �0n(1)� ��0n(1)�2 = n(2n+ 5)(n� 1)72 : (4d)The mean In is equal to half the worst-case value of In. Note from (4b) that �n(z)is a product of individual PGFs bk(z), which indicates by a remark at the beginning ofSection 2.5 that In can be expressed as the sum of independent RVs. This suggests anotherway of looking at the derivation: The decomposition of In in question is the obvious one

www.manaraa.com

30 / Average-Case Analysis of Algorithms and Data Structuresbased upon the inversion table (2a); we have In = b1 + b2 + � � �+ bn, and the PGF of bkis bk(z) given above in (4b). Eqs. (4c) and (4d) follow from summing bk and var(bk), for1 � k � n. By a generalization of the central limit theorem to sums of independent butnonidentical RVs, it follows that (In � In)=�In converges to the normal distribution, asn!1.Another RV important to our sorting analyses is the number of left-to-right minima,denoted by Ln. For a permutation � 2 Sn, Ln[�] is the number of elements in � that areless than all the preceding elements in �. In terms of (2a), we haveLn[�] = ��f1 � k � n j bk = ��1k � 1g��:Let us de�ne Ln;k to be the number of permutations of n elements having k left-to-right minima. By Theorem 1, the OGF Ln(z) =Pk Ln;kzk is given byLn(z) = z(z + 1)(z + 2) : : : (z + n� 1); (5a)since the contribution to Ln(z) from the xj term in (x0 + x1 + : : :+ xk�1) in Theorem 3is z if j = k � 1 and 1 otherwise. The PGF �n(z) =Pk PrfLn = kgzk is thus�n(z) =Xk Ln;kn! zk = Y1�k�n `k(z); where `k(z) = z + k � 1k : (5b)Taking derivatives as above, we getLn = �0n(1) = Hn; (5c)var(Ln) = �00n(1) + �0n(1)� ��0n(1)�2 = Hn �H(2)n ; (5d)where Hn is the nth harmonic number P1�k�n 1=k, and H(2)n = P1�k�n 1=k2. Themean Ln is much less than the worst-case value of Ln, which is n. As above, we can lookat this derivation in the way suggested by the product decomposition of �n(z) in (5b):We can decompose Ln into a sum of independent RVs `1 + `2 + � � �+ `n, where `k[�] is 1if �k is a left-to-right minimum, and 0 otherwise. The PGF for `k is `k(z) given in (5b),and summing `k and var(`k) for 1 � k � n gives (5c) and (5d). The central limit theoremshows that Ln, when normalized, converges to the normal distribution.The above information about In and Ln su�ces for our purposes of analyzing sortingalgorithms, but it is interesting to point out that Theorem 1 has further applications. Forexample, let Tn;i;j;k be the number of permutations � 2 Sn such that In[�] = i, Ln[�] = j,and there are k left-to-right maxima. By Theorem 1, the OGF of Tn;i;j;k isTn(x; y; z) =Xi;j;k Tn;i;j;kxiyjzk= yz(y + xz)(y + x+ x2z) : : : (y + x+ x2 + � � �+ xn�1z): (6)

www.manaraa.com

Section 3.3. Shellsort / 313.2. Insertion SortInsertion sort is the method card players typically use to sort card hands. In the kth loop,for 1 � k � n� 1, the �rst k elements x[1], : : : , x[k] are already in sorted order, and the(k + 1)st element x[k + 1] is inserted into its proper place with respect to the precedingelements.In the simplest variant, called straight insertion, the correct position for x[k + 1] isfound by successively comparing x[k + 1] with x[k], x[k � 1], : : : until an element� x[k + 1]is found. The intervening elements are simultaneously bumped one position to the rightto make room. (For simplicity, we assume that there is a dummy element x[0] withvalue �1 so that an element � x[k + 1] is always found.) When the values in the input�le are distinct, the number of comparisons in the kth loop is equal to 1 plus the number ofelements > x[k + 1] that precede x[k + 1] in the input. In terms of the inversion table (2a),this is equal to 1+bx[k+1]. By summing on k, we �nd that the total number of comparisonsused by straight insertion to sort a permutation � is In[�] + n� 1. The following theoremfollows directly from (4c) and (4d):Theorem 2. The mean and the variance of the number of comparisons performedby straight insertion when sorting a random permutation are n2=4 + 3n=4 � 1 andn(2n+ 5)(n� 1)=72, respectively.An alternative to straight insertion is to store the already-sorted elements in a binarysearch tree; the kth loop consists of inserting element x[k + 1] into the tree. After alln elements are inserted, the sorted order can be obtained via an inorder traversal. Abalanced binary search tree can be used to insure O(n logn) worst-case time performance,but the overhead of the balancing operations slows down the algorithm in practice. Whenthe tree is not required to be balanced, there is little overhead, and the average running timeis faster. We defer the analysis until our discussion of binary search trees in Section 4.2.3.3. ShellsortThe main reason why straight insertion is relatively slow is that the items are insertedsequentially; each comparison reduces the number of inversions (which is �(n2) on theaverage) by at most 1. Thus, the average running time is �(n2). D. L. Shell [1959]proposed an e�cient variant (now appropriately called Shellsort) in which the insertionprocess is done in several passes of successive re�nements. For a given input size n, thepasses are determined by an \increment sequence" ht, ht�1, : : : , h1, where h1 = 1. Thehi pass consists of straight insertion sorts of each of the hi sub�lessub�le 1 : x[1]x[1 + hi]x[1 + 2hi] : : :sub�le 2 : x[2]x[2 + hi]x[2 + 2hi] : : :� � � � � �sub�le hi : x[hi]x[2hi]x[3hi] : : : (7)In the early passes (when the increments are typically large), elements can be displaced farfrom their previous positions with only a few comparisons; the later passes \�ne tune" the

www.manaraa.com

32 / Average-Case Analysis of Algorithms and Data Structuresplacement of elements. The last pass, when h1 = 1, consists of a single straight insertionsort of the entire array; we know from Section 3.2 that this is fast when the number ofremaining inversions is small.Two-Ordered Permutations. A good introduction to the average-case analysis of Shell-sort is the two-pass version with increment sequence (2; 1). We assume that the input isa random permutation. Our measure of complexity is the total number of inversions en-countered in the sub�les (7) during the course of the algorithm. For simplicity, we restrictourselves to the case when n is even.The �rst pass is easy to analyze, since it consists of two independent straight insertionsorts, each of size n=2. We call a permutation k-ordered if x[i] < x[i+ k], for all 1 � i �n� k. At the end of the �rst pass, the permutation is 2-ordered, and by our randomnessassumption it is easy to see that each of the � nn=2� possible 2-ordered permutations isequally likely. The analysis of the last pass consists in determining the average number ofinversions in a random 2-ordered permutation.Theorem 3. The mean and the variance of the number of inversions I2n in a random2-ordered permutation of size 2n areI2n = n4n�1�2nn � � p�4 n3=2; var(I2n) � � 730 � �16�n3:Proof. The starting point of the proof is the important 1{1 correspondence betweenthe set of 2-ordered permutations of 2n elements and the set of monotone paths from theupper-left corner (0; 0) to the bottom-right corner (n; n) of the n-by-n lattice. The kthstep of the path is # if k appears in an odd position in the permutation, and it is ! ifk appears in an even position. The path for a typical permutation � is given in Figure 1.The sorted permutation has the \staircase path" shown by dotted lines. The importantproperty of this representation is that the number I2n[�] of inversions in � is equal to thearea between the staircase path and �'s path.There is an easy heuristic argument to show why I2n should be �(n3=2): Intuitively,the �rst n steps of a random path from (0; 0) to (n; n) are like a random walk, andsimilarly for the last n steps. (The transition probabilities are slightly di�erent from thosefor a random walk since the complete path is constrained to have exactly n # moves andn ! moves.) It is well known that random walks tend to be �(pn) units away from thediagonal after n steps, thus suggesting that the area between the walk and the staircasepath is �(n3=2).An extension to the notions of admissibility in Section 1.2 provides an elegant andprecise way to count the area, cumulated among all possible 2-ordered permutations. Letus de�ne P to be the set of all possible paths of length � 0 from (0; 0) to another pointon the diagonal, and bP to be the subset of all \arches" (paths that meet the diagonal onlyat the endpoints) of positive length. Each path in P can be decomposed uniquely intoa concatenation of zero or more arches in bP . In the language of Theorem 1.2, P is thesequence class of bP: P = bP�: (8a)For example, the path p 2 P in Figure 1 consists of four paths in bP: from (0; 0) to (3; 3),from (3; 3) to (4; 4), from (4; 4) to (6; 6), and from (6; 6) to (8; 8). For reasons of symmetry,

www.manaraa.com

Section 3.3. Shellsort / 33

Figure 1. Correspondence between 2-ordered permutations of 2n elements and monotonepaths from (0; 0) to (n; n), for n = 8. The dark path corresponds to the permutation� = 31 5 2 6 4 7 8 9 11 10 12 15 13 16 14. The dashed-line staircase path represents the sorted per-mutation. The number of inversions in � (namely, 9) is equal to the shaded area between �'s pathand the staircase path.it is useful to look at paths that stay to one side (say, the right side) of the diagonal. Therestrictions of P and bP to the right side of the diagonal are denoted S and bS, respectively.As above, we have S = bS�: (8b)Each path has the same number of # moves as! moves. We de�ne the size of path p,denoted jpj, to be the number of # moves in p. The other parameter of interest is the areabetween p and the staircase path; we call this area the weight of p and denote it by kpk.The size and weight functions are linear; that is, ��pq�� = jpj + jqj and kpqk = kpk + kqk,where pq denotes the concatenation of paths p and q.Let Pn;k (respectively, bPn;k, Sn;k, bSn;k) be the number of paths p 2 P (respectively,bP, S, bS) such that jpj = n and kpk = k. We de�ne the OGFP (u; z) =Xk;n Pn;kukzn; (9)and we de�ne the OGFs bP (u; z), S(u; z), and bS(u; z) similarly. The mean and varianceof I2n can be expressed readily in terms of P (u; z):I2n = 1�2nn � [zn] @P (u; z)@u ����u=1 ; (10a)I2n(I2n � 1) = 1�2nn � [zn] @2P (u; z)@u2 ����u=1 ; (10b)var(I2n) = I2n(I2n � 1) + I2n � (I2n)2: (10c)

www.manaraa.com

34 / Average-Case Analysis of Algorithms and Data StructuresWe can generalize our admissibility approach in Theorem 1.2 to handle OGFs with twovariables:Lemma 1. The sequence construct is admissible with respect to the size and weight func-tions: P = bP� =) P (u; z) = 11� bP (u; z) ; (11)S = bS� =) S(u; z) = 11� bS(u; z) : (12)Proof of Lemma 1. A equivalent de�nition of the OGF P (u; z) isP (u; z) = Xp2P ukpkzjpj:Each nontrivial path p 2 P can be decomposed uniquely into a concatenation bp1 bp2 : : : bp`of nontrivial paths in bP. By the linearity of the size and weight functions, we haveP (u; z) = Xp̂1;p̂2;:::;p̂`2bP`�0 ukp̂1k+kp̂2k+���+kp̂`k zjp̂1j+jp̂2j+���+jp̂`j= X̀�0� X̂p2bP ukp̂kzjp̂j�` = X̀�0 � bP (u; z)�` = 11� bP (u; z) :The proof of (12) is identical.Lemma 1 gives us two formul� relating the four OGFs P (u; z), bP (u; z), S(u; z), andbS(u; z). The following decomposition gives us another two relations, which closes the cycleand lets us solve for the OGFs: Every path bs 2 bS can be decomposed uniquely into thepath ! s #, for some s 2 S, and the size and weight functions of bs and s are related byjbsj = jsj+ 1 and kbsk = ksk+ jsj+ 1. Hence, we havebS(u; z) =Xs2S uksk+jsj+1zjsj+1 = uzXs2S uksk(uz)jsj = uz S(u; uz): (13)Each path in bP is either in bS or in the reection of bS about the diagonal, which wecall re(bS). For bs 2 bS, we have j re(bs)j = jbsj and k re(bs)k = kbsk � jbsj, which gives usbP (u; z) = Xŝ2bS[re(bS)ukŝkzjŝj = X̂s2S �ukŝkzjŝj + ukŝk�jŝjzjŝj� = bS(u; z) + bS �u; zu� : (14)Equations (13) and (14) can be viewed as types of admissibility reductions, similar tothose in Lemma 1, except that in this case the weight functions are not linear (the rela-tions between the weight functions involve the size function), thus introducing the uz andz=u arguments in the right-hand sides of (13) and (14).

www.manaraa.com

Section 3.3. Shellsort / 35The four relations (11){(14) allow us to solve for P (u; z). Substituting (13) into (12)gives S(u; z) = uzS(u; z)S(u; uz) + 1; (15)and substituting (13) into (14) and the result into (11), we getP (u; z) = �uzS(u; uz) + zS(u; z)�P (u; z) + 1: (16)Using (16), we can then express @@uP (u; z)��u=1 and @2@u2P (u; z)��u=1, which we need for (10),in terms of derivatives of S(u; z) evaluated at u = 1, which in turn can be calculatedfrom (15). These calculations are straightforward, but are best done with a symbolicalgebra system.Alternate Proof. We can prove the �rst part of Theorem 3 in a less elegant way bystudying how the �le is decomposed after the �rst pass into the two sorted sub�lesX1 = x[1]x[3]x[5] : : : and X2 = x[2]x[4]x[6] : : : :We can express I2n as I2n = 1�2nn � X1�i�n0�j�n�1 Ai;j ; (17a)where Ai;j is the total number of inversions involving the ith element of X1 (namely,x[2i� 1]), among all 2-ordered permutations in which there are j elements in X2 lessthan x[2i� 1]. The total number of such 2-ordered permutations is�i+ j � 1i� 1 ��2n� i� jn� j �;and a simple calculation shows that each contributes ji�jj inversions to Ai;j. Substitutingthis into (17a), we getI2n = 1�2nn � X1�i�n0�j�n�1 ji� jj�i+ j � 1i� 1 ��2n� i� jn� j �; (17b)and the rest of the derivation consists of manipulation of binomial coe�cients. The deriva-tion of the variance is similar.The increment sequence (2; 1) is not very interesting in practice, because the �rst passstill takes quadratic time, on the average. We can generalize the above derivation to showthat the average number In of inversions in a random h-ordered permutation isIn = 22q�1q! q!(2q + 1)! ��h2�q(q + 1) + �r2�(q + 1)� �h� r2 �q2� ; (18)where q = bn=hc and r = n mod h [Hunt 1967]. This allows us to determine (for large h andlarger n) the best two-pass increment sequence (h; 1). In the �rst pass, there are h insertion

www.manaraa.com

36 / Average-Case Analysis of Algorithms and Data Structuressorts of size � n=h; by (4c), the total number of inversions in the sub�les is � n2=(4h), onthe average. By (18), we can approximate the average number of inversions encounteredin the second pass by In � 18p�hn3=2. The total number of inversions in both passes isthus � n2=(4h) + 18p�hn3=2, on the average, which is minimized when h � (16n=�)1=3.The resulting expected running time is O(n5=3).When there are more than two passes, an interesting phenomenon occurs: if an h-sorted �le is k-sorted, the �le remains h-sorted. Yao [1980] shows how to combine this factwith an extension of the approach used in (17a) and (17b) to analyze increments of theform (h; k; 1), for constant values h and k. Not much else is known in the average case,except when each increment is a multiple of the next. In that case, the running time canbe reduced to O(n1:5+�=2), where � = 1=(2t � 1) and t is the number of increments.V. Pratt discovered that we get an O(n log2 n)-time algorithm in the worst case if weuse all the increments of the form 2p3q, for p; q � 0. For maximum e�ciency, the incre-ments need not be in decreasing order, but 2p+13q and 2p3q+1 should precede 2p3q. Thisparticular approach is typically not used in practice, since the number of increments (andhence the number of passes) is O(log2 n). Sequences with only O(logn) increments that re-sult in O(n1+�) running time are reported in [Incerpi and Sedgewick, 1985]. Lower boundson the worst-case sorting time for various types of increment sequences with O(logn) in-crements are given in [Weiss and Sedgewick 1988], [Cypher 1989]. For example, Shellsortrequires
(n log2 n= log logn) worst-case time when the increment sequence is monotoni-cally decreasing [Cypher 1989].A possible application of Shellsort is to the construction of e�cient networks forsorting. Sorting networks operate via a sequence of pairwise comparison/exchanges, wherethe choice of which pair of elements to compare next is made independently of the outcomesof the previous comparisons. Comparison/exchanges that involve di�erent elements canbe done in parallel by the network, so up to n=2 operations can be done simultaneouslyin one parallel step. Sorting networks thus require
(logn) parallel steps (or depth).K. E. Batcher developed practical sorting networks of depth 12k2, for n = 2k, based uponhis odd-even merge and bitonic sort networks [Batcher 1968] [Knuth 1973b]. Recently,Ajtai, Koml�os, and Szemer�edi [1983] solved a longstanding open problem by constructinga sorting network of depth O(logn); a complete coverage is given in [Pippenger 1989].The AKS sorting network is a theoretical breakthrough, but in terms of practicality thenetwork is not very useful since the coe�cient implicit in the Big-oh term is huge. Ifan O(n logn)-time Shellsort is found, it might be possible to modify it to yield a sortingnetwork of depth O(logn) that is practical. However, the lower bound result quoted above[Cypher 1986] shows that, in order to �nd an O(n logn)-time Shellsort, the incrementsequence will have to be fundamentally di�erent from those used in practice.

www.manaraa.com

Section 3.4. Bubble Sort / 373.4. Bubble SortThe bubble sort algorithm works by a series of passes. In each pass, some �nal portionx[`+ 1]x[`+ 2] : : : x[n] of the array is already known to be in sorted order, and the largestelement in the initial part of the array x[1]x[2] : : : x[`] is \bubbled" to the right by asequence of `� 1 pairwise comparisonsx[1] : x[2]; x[2] : x[3]; : : : ; x[`� 1] : x[`]:In each comparison, the elements exchange place if they are out of order. The value of `is reset to the largest t such that the comparison x[t] : x[t+ 1] required an exchange, andthen the next pass starts.The bubble sort algorithm itself is not very useful in practice, since it runs more slowlythan insertion sort and selection sort, yet is more complicated to program. However, itsanalysis provides an interesting use of inversion statistics and asymptotic techniques. Therunning time of bubble sort depends upon three quantities: the number of inversions In,the number of passes An, and the number of comparisons Cn. The analysis of In hasalready been given in Section 3.1.Theorem 4 [Knuth, 1973b]. The average number of passes and comparisons done inbubble sort, on a random permutation of size n, isAn = n�r�n2 + O(1); Cn = 12 �n2 � n logn� (+ log 2� 1)n�+ O(pn):Proof. Each pass in bubble sort reduces all the nonzero entries in the inversion tableby 1. There are at most k passes in the algorithm when each entry in the original inversiontable is � k. The number of such inversion tables can be obtained via Theorem 1 bysubstituting xi = �i�k into F (x0; x1; : : : ; xn), which gives k! kn�k. We use the notation�R to denote 1 if relation R is true, and 0 otherwise. Plugging this into the de�nition ofexpected value, we get An = n+ 1� 1n! X0�k�n k! kn�k: (19)The summation can be shown to be equal to p�n=2� 2=3 +O(1=pn) by an applicationof the Euler-Maclaurin summation formula (Theorem 2.1).The average number of comparisons Cn can be determined in a similar way. For themoment, let us restrict our attention to the jth pass. Let cj be the number of comparisonsdone in the jth pass. We have cj = ` � 1, where ` is the upper index of the subarrayprocessed in pass j. We can characterize ` as the last position in the array at the beginningof pass j that contains an element which moved to the left one slot during the previouspass. We denote the value of the element in position ` by i. It follows that all the elementsin positions `+ 1, `+ 2, : : : , n have value > i. We noted earlier that each nonzero entryin the inversion table decreases by 1 in each pass. Therefore, the number of inversions forelement i at the beginning of the jth pass is bi � j + 1, and element i is located in arrayposition ` = i+ bi � j + 1. This gives us cj = i+ bi � j.

www.manaraa.com

38 / Average-Case Analysis of Algorithms and Data StructuresWithout a priori knowledge of ` or i, we can calculate cj by using the formulacj = max1�i�nfi+ bi � j j bi � j � 1g: (20)The condition bi � j � 1 restricts attention to those elements that move left one place inpass j � 1; it is easy to see that the term in (20) is maximized at the correct i. To makeuse of (20), let us de�ne fj(k) to be the number of inversion tables (2a) such that eitherbi < j� 1 or i+ bi� j � k. We can evaluate fj(k) from Theorem 1 by substituting xi = 1if bi < j � 1 or i+ bi � j � k, and xi = 0 otherwise. A simple calculation givesfj(k) = (j + k)! (j � 1)n�j+k; for 0 � k � n� j:By the de�nition of expected value, we haveCn = 1n! X1�j�n0�k�n�j k�fj(k)� fj(k � 1)�= �n+ 12 �� 1n! X1�j�n0�k�n�j fj(k)= �n+ 12 �� 1n! X0�r<s�n s! rn�s: (21a)The intermediate step follows by summation by parts. The summation in (21a) can besimpli�ed using the Euler-Maclaurin summation formula into series of sums of the form1m! X1�t<m(m� t)! (m� t)ttq; for q � �1; (21b)where m = n+1. By applying Stirling's approximation, we �nd that the summand in (21b)decreases exponentially when t > m1=2+�, and we can reduce the problem further to thatof approximating Fq(1=m), whereFq(x) =Xk�1 e�k2x=2kq; for q � �1; (22a)as m ! 1. The derivation can be carried out using Laplace's method for sums and theEuler-Maclaurin summation formula (see Section 2.1), but things get complicated for thecase q = �1. A more elegant derivation is to use Mellin transforms. The function Fq(x) isa harmonic sum, and its Mellin transform F �q (s) isF �q (s) = �(s) �(2s� q) 2s; (22b)de�ned in the fundamental strip h0;+1i. The asymptotic expansion of Fq(1=m) followsby computing the residues in the left half-plane <(s) � 0. There are simple poles ats = �1, �2, : : : because of the term �(s). When q = �1, the �(s) and �(2s � q) termscombine to contribute a double pole at s = 0. When q � 0, �(s) contributes a simple poleat s = 0, and �(2s � q) has a simple pole only at s = (q + 1)=2 > 0. Putting everythingtogether, we �nd that1n! X0�r<s�n s! rn�s = 12n logn+ 12(+ log 2)n+ O(pn): (23)The formula for Cn follows immediately from (21a).

www.manaraa.com

Section 3.6. Radix-Exchange Sort / 39After k passes in the bubble sort algorithm, the number of elements known to bein their �nal place is typically larger than k; the variable ` is always set to be as smallas possible so as to minimize the size of the array that must be considered in a pass.The fact that (23) is O(n logn) implies that the number of comparisons for large n is notsigni�cantly less than that of the more na��ve algorithm in which the bubbling process inthe kth pass is done on the subarray x[1]x[2] : : : x[n� k + 1].3.5. QuicksortWe can get a more e�cient exchange-based sorting algorithm by using a divide-and-conquerapproach. In the quicksort method, due to C. A. R. Hoare, an element s is chosen (say,the �rst element in the �le), the �le is partitioned into the part � s and the part > s, andthen each half is sorted recursively. The recursive decomposition can be analyzed using thesophisticated tools we develop in Section 4.2 for binary search trees, which have a similardecomposition, and so we defer the analysis until Section 4.2. The expected number ofcomparisons is � 2n logn. Analysis techniques and results for quicksort can be found in[Knuth 1973b] and [Sedgewick 1977b].Quicksort is an extremely good general-purpose sorting routine. A big drawback ofthe version described above is its worst-case performance: it requires �(n2) time to sorta �le that is already sorted or nearly sorted! A good way to guard against guaranteedbad behavior is to choose the partioning element s to be a random element in the currentsub�le, in which case our above analysis applies. Another good method is to choose s tobe the median of three elements from the sub�le (say, the �rst, middle, and last elements).This also has the e�ect of reducing the average number of comparisons to � 127 n logn.If the smaller of the two sub�les is always processed �rst after each partition, then therecursion stack contains at most logn entries. But by clever programming, we can simulatethe stack with only a constant amount of space, at a very slight increase in computing time[�Durian 1986], [Huang and Knuth 1986]. The analysis of quicksort in the presence of someequal keys is given in [Sedgewick 1977a].3.6. Radix-Exchange SortThe radix-exchange sort algorithm is an exchange-based algorithm that uses divide-and-conquer in a di�erent way from quicksort. The recursive decomposition is based upon theindividual bits of the keys. In pass k, the keys are partitioned into two groups: the groupwhose kth least signi�cant bit is 0, and the group whose kth least signi�cant bit is 1. Thepartitioning is done in a \stable" manner so that the relative order of the keys within eachgroup is the same as before the partitioning. Then the 1-group is appended to the 0-group,and the next pass begins. After t passes, where t is the number of bits in the keys, thealgorithm terminates.In this case, the recursive decomposition is identical to radix-exchange tries, whichwe shall study in a general context in Section 4.3, and the statistics of interest for radix-exchange sorting can be expressed directly in terms of corresponding parameters of tries.We defer the details to Section 4.3.

www.manaraa.com

40 / Average-Case Analysis of Algorithms and Data Structures3.7. Selection Sort and HeapsortSelection sort in some respects is the inverse of insertion sort, because the order in whichthe elements are processed is based upon the output order than upon the input order. Inthe kth pass, for 1 � k � n � 1, the kth smallest element is selected and is put into its�nal place x[i].Straight Selection. In the simplest variant, called straight selection sort, the kth smallestelement is found by a sequential scan of x[k]x[k + 1] : : : x[n], and it changes places withthe current x[k]. Unlike insertion sort, the algorithm is not stable; that is, two elementswith the same value might be output in the reverse of the order that they appear in theinput.The number of comparisons performed is alwaysCn = (n� 1) + (n� 2) + � � �+ 1 = n(n� 1)2 :The number of times a new minimum is found (the number of data movements) in thekth pass is the number of left-to-right minima Ln�k+1 encountered in x[k]x[k+ 1] : : : x[n],minus 1. All permutations of fx[k], x[k + 1], : : : , x[n]g are equally likely. By (5c), theaverage number of updates of the minimum over the course of the algorithm isX1�k�n�1 �Ln�k+1 � 1� = (n+ 1)Hn � 2n = n logn+ (� 2)n+ logn+ O(1):The variance is much more di�cult to compute, since the contributions Ln�k+1 fromthe individual passes are not independent. If the contributions were independent, thenby (5d) the variance would be be � n logn. Yao [1988] shows by relating the varianceto a geometric stochastic process that the variance is � �n3=2, and he gives the constant� = 0:91 : : : explicitly in summation form.Heapsort. A more sophisticated way of selecting the minimum, called heapsort, due toJ. W. J. Williams, is based upon the notion of tournament elimination. The n� k + 1 el-ements to consider in the kth pass are stored in a heap priority queue. A heap is a tree inwhich the value of the root of each subtree is less than or equal to the values of the otherelements in the subtree. In particular, the smallest element is always at the root. Theheaps we use for heapsort have the nice property that the tree is always perfectly balanced,except possibly for the rightmost part of the last level. This allows us to represent theheap as an array h without need of pointers: the root is element h[1], and the children ofelement h[i] are stored in h[2i] and h[2i+ 1].The kth pass of heapsort consists of outputing h[1] and deleting it from the array; theelement stored in h[n� k + 1] is then moved to h[1], and it is \�ltered" down to its correctplace in O(logn) time. The creation of the initial heap can be done in linear time. Theworst-case time to sort the n elements is thus O(n logn). In the average case, the analysisis complicated by a lack of randomness: the heap at the start of the kth pass, for k � 2,is not a random heap of n� k + 1 elements. Heaps and other types of priority queues arediscussed in Section 6.1 and [Mehlhorn and Tsakalidis 1989].

www.manaraa.com

Section 3.8. Merge Sort / 413.8. Merge SortThe �rst sorting program ever executed on an electronic computer used the followingdivide-and-conquer approach, known as merge sort: The �le is split into two sub�les ofequal size (or nearly equal size), each sub�le is sorted recursively, and then the two sortedsub�les are merged together in the obvious linear fashion. When done from bottom-up,the algorithm consists of several passes; in each pass, the sorted sub�les are paired o�, andeach pair is merged together.The linear nature of the merging process makes it ideal for input �les in the form ofa linked list and for external sorting applications, in which the �le does not �t entirelyin internal memory and must instead be stored in external memory (like disk or tape),which is best accessed in a sequential manner. Typically, the merge is of a higher orderthan 2; for example, four sub�les at a time might be merged together, rather than justtwo. Considerations other than the number of comparisons, such as the rewind time ontapes and the seek time on disks, a�ect the running time. An encyclopedic collection ofvariants of merge sort and their analyses appears in [Knuth, 1973b]. Merge sort algorithmsthat are optimal for external sorting with multiple disks are discussed in [Aggarwal andVitter, 1988], [Nodine and Vitter, 1990].For simplicity, we restrict our attention to the number of comparisons performedduring a binary (order-2) merge sort, when n = 2j , for some j � 0. All the comparisonstake place during the merges. For each 0 � k � j�1, there are 2k merges of pairs of sortedsub�les, each sub�le of size n=2k+1 = 2j�k�1. If we assume that all n! permutations areequally likely, it is easy to see that, as far as relative order is concerned, the two sub�les ineach merge form a random 2-ordered permutation, independent of the other merges. Thenumber of comparisons to merge two random sorted sub�les of length p and q is p+ q��,where � is the number of elements remaining to be output in one sub�le when the othersub�le becomes exhausted. The probability that � � s, for s � 1, is the probability thatthe s largest elements are in the same sub�le, namely,ps(p+ q)s + qs(p+ q)s ;where ab denotes the \falling power" a(a� 1) : : : (a� b+ 1). Hence, we have� =Xs�1� ps(p+ q)s + qs(p+ q)s� = pq + 1 + qp+ 1 : (24)By (24), the total number of comparisons used by merge sort, on the average, isCn = j2j � X1�k�j�1 2k 2j�k2j�k�1 + 1 = n log2 n� �n+ O(1);where � =Xn�0 12n + 1 = 1:2645 : : : :

www.manaraa.com

42 / Average-Case Analysis of Algorithms and Data StructuresThe analysis when n is not a power of 2 involves arithmetic functions based uponthe binary representation of n and can be found in [Knuth, 1973b]. Batcher's odd-evenmerge and bitonic sort networks, which can be used to construct sorting networks of depth12 (log2 n)2, are analyzed in [Batcher 1968], [Knuth 1973b], and [Sedgewick 1978]. Othermerging algorithms are covered in [Mehlhorn and Tsakalidis 1989].

www.manaraa.com

Section 4.1. Binary Trees and Plane Trees / 434. Recursive Decompositions and Algorithms on TreesIn this section we develop a uniform framework for obtaining average-case statistics onfour classes of trees|binary and plane trees, binary search trees, radix-exchange tries,and digital search trees. Our statistics, which include number of trees, number of nodes,height, and path length, have numerous applications to the analysis of tree-based searchingand symbolic processing algorithms, as well as to the sorting algorithms whose analysis wedeferred from Section 2, such as quicksort, binary tree sort, and radix-exchange sort. Ourapproach has two parts:1. Each of the four classes of trees has a recursive formulation that lends itself naturallyto the symbolic generating function method described in Section 1. The statisticof interest for each tree t corresponds naturally to a valuation function (VF) v[t].The key idea which uni�es our analyses is an extension of the admissibility conceptof Section 1: A recursive de�nition of the VF translates directly into a functionalequation involving the generating function. The type of generating function used(either OGF or EGF) and the type of functional equation that results depend uponthe particular nature of the recursion.2. We determine the coe�cients of the GF based upon the functional equation resultingfrom step 1. Sometimes an explicit closed form is obtained, but typically we apply theasymptotic methods of Section 2, our particular approach depending upon the natureof the functional equation.
4.1. Binary Trees and Plane TreesBinary trees and plane trees provide a natural representation for many types of symbolicexpressions and recursive structures. This section studies statistical models under which alltrees of a given size are equally likely. Such models are not applicable to the study of binarysearch trees, radix-exchange tries, and digital search trees, which we cover in Sections 4.2,4.3, and 4.4, but when enriched slightly they provide good models for algorithms operatingon expression trees, term trees, and Lisp structures [Clark 1979].We begin by considering the class B of binary trees de�ned in Section 1.1:B = f g+ (fg � B � B); (1)where represents an external node and an internal node. The size of a binary tree isthe number of internal nodes in the tree.The cartesian product decomposition in (1) suggests that we represent our statisticof interest via an OGF. Further motivation for this choice is given in Eqs. (1.2) and (1.3).We use v[t] to represent the valuation function v applied to tree t. We de�ne vn to be itscumulated valuePjtj=n v[t] among all trees of size n, and v(z) to be the OGFPn�0 vnzn.The recursive decomposition of B leads directly to the following fundamental relations:

www.manaraa.com

44 / Average-Case Analysis of Algorithms and Data StructuresTheorem 1. The sum and recursive product valuation functions are admissible for theclass B of binary trees:v[t] = u[t] + w[t] =) v(z) = u(z) + w(z);v[t] = u[tleft] � w[tright] =) v(z) = z � u(z) � w(z);where tleft and tright denote the left and right subtrees of t.The proof is similar to that of Theorem 1.1. The importance of Theorem 1 is dueto the fact that it provides an automatic translation from VF to OGF, for many VFs ofinterest.Examples. 1. Enumeration. The standard trick we shall use throughout this section forcounting the number of trees of size n in a certain class is to use the unit VF I[t] � 1. Forexample, let Bn, for n � 0, be the number of binary trees with n internal nodes. By ourde�nitions above, Bn is simply equal to In, and thus the OGF B(z) is equal to I(z). Wecan solve for B(z) via Theorem 1 if we use the following recursive de�nition of I[t],I[t] = �jtj=0 + I[tleft] � I[tright]; (2a)which is a composition of the two types of VF expressions handled by Theorem 1. Here�R denotes 1 if relation R is true, and 0 otherwise. Since B0 = 1, the OGF for �jtj=0 is 1.Theorem 1 translates (2a) into B(z) = 1 + zB(z)2: (2b)The solution B(z) = 12z (1 � p1� 4z) follows by the quadratic formula. By expandingcoe�cients, we get Bn = 1n+1�2nn �, as in Section 1.1.2. Internal Path Length. The standard recursive tree traversal algorithm uses a stackto keep track of the ancestors of the current node in the traversal. The average stack size,amortized over the course of the traversal, is related to the internal path length of the tree,divided by n. The VF corresponding to the cumulated internal path lengths among allbinary trees with n nodes can be expressed in the following form suitable for Theorem 1:p[t] = jtj � 1 + �jtj=0 + p[tleft] + p[tright]= jtj � 1 + �jtj=0 + p[tleft] � I[tright] + I[tleft] � p[tright]: (3a)We computed the OGFs for I[t] � 1 and �jtj=0 in the last example, and the OGF for thesize VF S[t] = jtj is easily seen to be S(z) =Pn�0 nBnzn = zB0(z). Applying Theorem 1,we have p(z) = zB0(z)�B(z) + 1 + 2z p(z)B(z);which gives us p(z) = zB0(z)�B(z) + 11� 2zB(z) = 11� 4z � 1z � 1� zp1� 4z � 1� : (3b)We get pn by expanding (3b). The result is given below; the asymptotics follow fromStirling's formula.

www.manaraa.com

Section 4.1. Binary Trees and Plane Trees / 45Theorem 2. The cumulated internal path length over all binary trees of n nodes ispn = 4n � 3n+ 1n+ 1 �2nn �;and the expected internal path length pn=Bn is asymptotically np�n� 3n+ O(pn).Theorem 2 implies that the time for a traversal from leaf to root in a random binarytree is O(pn), on the average.In a similar derivation, Knuth [1973a] considers the bivariate OGF B(u; z) =Pn;k�0 bn;kukzn, where bn;k is the number of binary trees with size n and internal pathlength k. It satis�es the functional equation B(u; z) = 1 + zB(u; uz)2 (cf. (2b)). Theexpected internal path length and the variance can be formed in the usual way in termsof the coe�cients of zn in the derivatives of B(u; z), evaluated at u = 1.The two examples above illustrate our general philosophy that it is useful to computethe OGFs for a standard catalogue of valuation functions, so as to handle a large varietyof statistics. The most important VFs are clearly I[t] and S[t].Another important class of trees is the class G of plane trees (also known as orderedtrees). Each tree in G consists of a root node and an arbitrary number of ordered subtrees.This suggests the recursive de�nition G = fg � G�; (4)where represents a node, and G� = fg �Pk�0 Gk is the sequence class of G, de�nedin Section 1.2. The size of a tree is de�ned to be the number of its nodes. An interestingsubclass of G is the class T = T
 of plane trees in which the degrees of the nodes areconstrained to be in some subset
 of the nonnegative integers. We require that 0 2
 orelse the trees will be in�nite. The class G is the special case of T
 when
 is the set ofnonnegative integers. It is possible to mimic (4) and get the corresponding representationfor T T = fg �Xk2
T k; (5)but we shall see that it is just as simple to deal directly with (4) by using the appropriate VFto restrict the degrees. There are two important correspondences between B, G, and T f0;2g:1. The set of binary trees of size n is isomorphic to the set of plane trees of size n+ 1.A standard technique in data structures illustrates the correspondence: We representa general tree of n+1 nodes as a binary tree with no right subtree and with a binarytree of n internal nodes as its left subtree; the left link denotes \�rst child" and theright link denotes \next sibling."2. If we think of the bottommost nodes of trees in T f0;2g as \external nodes," we geta 1{1 correspondence between binary trees of size n and plane trees with degreeconstraint f0; 2g of size 2n+ 1.Theorem 1 generalizes in a straightforward manner for G:

www.manaraa.com

46 / Average-Case Analysis of Algorithms and Data StructuresTheorem 3. The sum and recursive product valuation functions are admissible for theclass G of plane trees:v[t] = u[t] + w[t] =) v(z) = u(z) + w(z);v[t] = �deg t2
 Y1�i�deg tui;deg t[ti] =) v(z) = zXk2
 Y1�i�k ui;k(z);where t1, t2, : : : , tdeg t represent the subtrees attached to the root of t.Examples. Enumerations. 1. The number Gn of plane trees with n nodes is obtained viathe unit VF I[t] � 1 =Q0�i�deg t I[ti]: (Plane trees are always non-empty, so jtj � 1.) ByTheorem 3, we getG(z) = I(z) = zPk�0 I(z)k = z=�1�I(z)�. This impliesG(z) = I(z) =12 (1�p1� 4z) = zB(z), and thus we have Gn+1 = Bn, which illustrates correspondence 1mentioned above.2. For the number Tn of trees of size n with degree constraint
, we apply to Gthe constrained unit VF I
[t] = �t2T = �deg t2
Q0�i�deg t I
[ti]: For the special case
 = f0; 2g, Theorem 3 gives us T (z) = I
(z) = z+zI
(z)2. The solution to this quadraticequation is T (z) = I
(z) = 12z (1 � p1� 4z2) = zB(z2), and thus we have T2n+1 = Bn,illustrating correspondence 2.3. For d � 2, let us de�ne the class D = Dd of d-ary trees to be D = f g+(fg�Dd).Binary trees are the special case d = 2. The number Dn of d-ary trees can be obtainedby generalizing our derivation of Bn at the beginning of this section. The derivationwe present, though, comes from generalizing correspondence 2 and staying within theframework of plane trees: Each d-ary tree corresponds to a plane tree of dn + 1 nodeswith degree constraint
 = f0; dg. The same derivation used in the preceding examplegives T (z) = I(z) = z + zI(z)d. By Lagrange-B�urmann inversion, with f(z) = T (z),'(u) = 1 + ud, we getDn = Tdn+1 = [zdn+1]T (z) = 1dn+ 1 [udn] �(1 + ud)dn+1� = 1dn+ 1�dn+ 1n �:In each of the examples above, the functional equation involving the OGF was simpleenough so that either the OGF could be solved in explicit closed form or else the Lagrange-B�urmann inversion theorem could be applied easily (that is, the coe�cients of powersof '(u) were easy to determine). More advanced asymptotic methods are needed, forexample, to determine the number Tn of plane trees with arbitrary degree constraint
.Let us assume for simplicity that
 is aperiodic, that is,
 consists of 0 and any sequenceof positive integers with a greatest common divisor of 1.To count Tn, we start out as in the second example above. By applying Theorem 3,we get T (z) = z !�T (z)�; (6)where !(u) = Pk2
 uk. Lagrange-B�urmann inversion is of little help when !(u) hasseveral terms, so we take another approach. The singularities of T (z) are of an algebraicnature. We know from Section 2.2 that the asymptotic behavior of the coe�cients Tn are

www.manaraa.com

Section 4.1. Binary Trees and Plane Trees / 47related to the dominant singularities of T (z), that is, the ones with smallest modulus. To�nd the singularities of T (z), let us regard T (z) as the solution y of the equationF (z; y) = 0; where F (z; y) = y � z!(y): (7)The function y = T (z) is de�ned implicitly as a function of z. By the Implicit FunctionTheorem, the solution y with y(z0) = y0 is analytically continuable at z0 if Fy(z0; y0) 6= 0,where Fy(z; y) denotes the partial derivative with respect to y. Hence, the singularitiesof y (the values of z where y is not analytic) are the values � whereF (�; �) = � � �!(�) = 0; Fy(�; �) = 1� �!0(�) = 0: (8)This gives � = �=!(�) = 1=!0(�), where � is a root of the equation!(�)� �!0(�) = 0: (9)We denote the dominant singularity of T (z) on the positive real line by ��, and welet �� be the (unique) corresponding value of � from (9). Since T (��) = ��, it follows that�� is real. If
 is aperiodic, then by examining the power series equation correspondingto (9), we see that �� is the unique real solution to (9), and any other solution � musthave larger modulus.Around the point (��; ��), the dependence between y and z is locally of the form0 = F (z; y) = Fz(��; ��)(z � ��) + 0 � (y � ��) + 12Fyy(��; ��)(y � ��)2+ smaller order terms: (10)By iteration and bounding the coe�cients, we can show that y(z) has the formy(z) = f(z) + g(z)r1� z�� ; (11a)where f(z) and g(z) are analytic at z = ��, and g(��) = �p2!(��)=!00(��). Hence, wehave y(z) = f(z) + g(��)s1� z�� + O �(1� z���3=2! : (11b)Theorem 2.2 shows that the contribution of f(z) to Tn is insigni�cant. By applying thetransfer lemma (Theorem 2.3), we get our �nal result:Theorem 4 [Meir and Moon 1978]. If
 is aperiodic, we haveTn � c��nn�3=2;where the constants c and � are given by c =p!(�)=(2�!00(�)) and 0 < � = �=!(�) < 1,and � is the smallest positive root of the equation !(�)� �!0(�) = 0.For brevity, we expanded only the �rst terms of y(z) in (11b), but we could easilyhave expanded y(z) further to get the full asymptotic expansion of Tn. In the periodiccase, which is also considered in [Meir and Moon 1978], the generating function T (z) hasmore than one dominant singularity, and the contributions of these dominant singularitiesmust be added together.In the rest of this section we show how several other parameters of trees can beanalyzed by making partial use of this approach. The asymptotics are often determinedvia the techniques described in Sections 2.2{2.4.

www.manaraa.com

48 / Average-Case Analysis of Algorithms and Data StructuresHeight of Plane Trees. For example, let us consider the expected maximum stack sizeduring a recursive tree traversal. (We earlier considered the expected stack size amortizedover the course of the traversal.) The maximum stack size is simply the height of the tree,namely, the length of the longest path from the root to a node.Theorem 5 [De Bruijn, Knuth, and Rice 1972]. The expected height Hn of a plane treewith n nodes, where each tree in G is equally likely, is Hn = p�n+O(1):Proof Sketch. The number G[h]n of plane trees with height � h corresponds to usingthe 0{1 VF G[h], which is de�ned to be 1 if the height of t is � h, and 0 otherwise. It hasa recursive formulation G[h+1][t] = Y1�i�deg tG[h][ti]; (12a)which is in the right form to apply Theorem 3. From it we getG[h+1](z) =Xk�0 z �G[h](z)�k = z1�G[h](z) ; (12b)where G[0](z) = z. Note the similarity to the generating function for plane trees, whichsatis�es G(z) = z=�1�G(z)�. It is easy to transform (12b) intoG[h+1](z) = z Fh(z)Fh+1(z) ; where Fh+2(z) = Fh+1(z)� zFh(z): (13)The polynomials Fh(z) are Chebyshev polynomials. From the linear recurrence that Fh(z)satis�es, we can express Fh(z) as a rational function of G[h](z). Then applying Lagrange-B�urmann inversion, we get the following expression:Gn+1 �G[h]n+1 =Xj�0�� 2nn+ 1� j(h+ 2)�� 2� 2nn� j(h+ 2)�+ � 2nn� 1� j(h+ 2)�� :(14)The expected tree height Hn+1 is given byHn+1 = 1Gn+1 Xh�1h�G[h]n+1 �G[h�1]n+1 � = 1Gn+1 Xh�0�Gn+1 �G[h]n+1� : (15)By substituting (14), we see that the evaluation of (15) is related to sums of the formSn =Xk�0 d(k)� 2nn� k���2nn �; (16)where d(k) is the number of divisors of k. By Stirling's approximation, we can approxi-mate Sn by T (1=pn), where T (x) =Xk�1 d(k)e�k2x2 : (17)The problem is thus to evaluate T (x) asymptotically as x! 0. This is one of the expansionswe did in Section 2.4 using Mellin transforms, where we found thatT (x) � �p�2 logxx + �34 � log 22 � p�x + 14 + O(xm); (18)for any m > 0, as x! 0. The theorem follows from the appropriate combination of termsof the form (18).

www.manaraa.com

Section 4.1. Binary Trees and Plane Trees / 49Theorem 6 [Flajolet and Odlyzko 1982]. The expected height Hn of a plane tree withdegree constraint
, where
 is aperiodic and each tree in T is equally likely, is � �pn,where � is a constant that depends upon
.Proof Sketch. By analogy with (12), we use the VF T [h][t] = �height t�h. This VF canbe expressed recursively as T [h+1][t] = �deg t2
 Y1�i�deg tT [h][ti]: (19a)Theorem 3 gives us T [h+1](z) = z !�T [h](z)�; (19b)where T [0](z) = z and !(u) = Pk2
 uk. The generating function H(z) of the cumulatedheight of trees is equal to H(z) =Xh�0�T (z)� T [h](z)� : (20)One way to regard (19b) is simply as the iterative approximation scheme to the �xed pointequation (6) that determines T (z). A delicate singularity analysis leads to the result.To do the analysis, we need to examine the behavior of the iterative scheme near thesingularity z = �, which is an example of a singular iteration problem. We �nd in theneighborhood of z = � that H(z) � d1� z=� log 11� z=� ;where d is the appropriate constant. The theorem follows directly.Methods similar to those used in the proof of this theorem had been used by Odlyzkoto prove the following:Theorem 7 [Odlyzko 1982]. The number En of balanced 2{3 plane trees with n \external"nodes is � 1n�nW (logn), where � is the golden ratio (1+p5)=2, andW (x) is a continuousand periodic function.This result actually extends to several families of balanced trees, which are used assearch structures with guaranteed O(logn) access time. The occurrence of the goldenratio in Theorem 7 is not surprising, given our discussion in Section 2.2 of the equationf(z) = z + f(z2 + z3), which is satis�ed by the OGF of En.Pattern Matching. Another important class of algorithms on trees deals with patternmatching, the problem of detecting all occurrences of a given pattern tree inside a largertext tree, which occurs often in symbolic manipulation systems. Unlike the simpler caseof string matching, where linear-time worst-case algorithms are known, it is conjecturedthat no linear-time algorithm exists for tree pattern matching.The following straightforward algorithm, called sequential matching, has quadraticrunning time in the worst case, but can be shown to run in linear time on the average. Foreach node of the tree, we compare the subtree rooted at that node with the pattern treeby doing simultaneous preorder traversals. Whenever a mismatch is found, the preordertraversal is aborted, and the next node in the tree is considered. If a preorder traversalsuccessfully �nishes, then a match is found.

www.manaraa.com

50 / Average-Case Analysis of Algorithms and Data StructuresTheorem 8 [Steyaert and Flajolet 1983]. The expected running time of the sequentialmatching algorithm, when applied to a �xed pattern P and all trees in T of size n, is � cn,where c is a function of the degree constraint
 and the structure of pattern P and isuniformly bounded by an absolute constant, for all P .Proof Sketch. The proof depends upon a lemma that the probability that P occursat a random node in the tree is asymptotically �e�1�i, where i and e are the numbers ofinternal and external nodes in P . The algebraic part of the proof of the lemma is a directapplication of the method of Theorems 1 and 3 applied to multisets of trees. Generatingfunctions for the number of pattern matches have simple expressions in terms of T (z); asingularity analysis �nishes the proof.The same type of analysis can be applied to a large variety of tree algorithms in asemi-automatic way. One illustration is the following:Theorem 9 [Flajolet and Steyaert 1987]. For any set � of operators and � of dif-ferentiation rules with at least one \expanding rule," the average-case complexity of thesymbolic di�erentiation algorithm is asymptotically cn3=2 + O(n), where the constant cdepends upon � and �.Tree Compaction. A di�erent kind of singular behavior occurs in the problem knownas common subexpression elimination or tree compaction, where a tree is compacted intoa directed acyclic graph by avoiding duplication of identical substructures. This has ap-plications to the compaction of Lisp programs and to code optimization.Theorem 10 [Flajolet, Sipala, and Steyaert 1987]. The expected size of the maximallycompacted dag representation of a random tree in T of size n is cn=p logn+O(n= logn),where the constant c depends upon
.The dominant singularity in this case is of the form 1=p(1� z) log(1� z)�1. Thetheorem shows that the space savings to be expected when compacting trees approaches 100percent as n!1, though convergence is slow.Register Allocation. The register allocation problem consists of �nding an optimal strat-egy for evaluating expressions that can be represented by a tree. The optimal pebblingstrategy, due to Ershov, requires only O(logn) registers to evaluate a tree of size n. Thefollowing theorem determines the coe�cient in the average case for evaluating expressionsinvolving binary operators:Theorem 11 [Flajolet, Raoult, and Vuillemin 1979], [Kemp 1979]. The expected optimumnumber of registers to evaluate a random binary tree of size n is log4 n+P (log4 n) + o(1),where P (x) is a periodic function with period 1 and small amplitude.Proof Sketch. The analysis involves the combinatorial sumVn =Xk�1 v2(k)� 2nn� k�;where v2(k) is the number of 2s in the decomposition of n into prime factors. If wenormalize and approximate the binomial coe�cient by an exponential term, as in (17), we

www.manaraa.com

Section 4.2. Binary Search Trees / 51can compute the approximation's Mellin transform12 �(s)2s � 1��12� :The set of regularly-spaced poles s = 2k�i= log 2 corresponds to periodic uctuations inthe form of a Fourier series.
4.2. Binary Search TreesWe denote by BST (S) the binary search tree formed by inserting a sequence S of elements.It has the recursive decompositionBST (S) = �
BST (S�); s1; BST (S>)�; if jSj � 1;h i; if jSj = 0, (21)where s1 is the �rst element in S, S� is the subsequence of the other elements thatare � s1, and S> is the subsequence of elements > s1. An empty binary search tree isrepresented by the external node .The search for an element x proceeds as follows, starting with the root s1 as thecurrent node y: We compare x with y, and if x < y we set y to be the left child of y, andif x > y we set y to be the right child of y. The process is repeated until either x = y(successful search) or else an external node is reached (unsuccessful search). (Note thatthis process �nds only the �rst element with value x. If the elements' values are all distinct,this is no problem; otherwise, the left path should be searched until a leaf or an element ofsmaller value is reached.) Insertion is done by inserting the new element into the tree atthe point where the unsuccessful search ended. The importance of binary search trees tosorting and range queries is that a linear-time inorder traversal will output the elementsin sorted order.Well-known data structures, such as 2-3 trees, AVL trees, red-black trees, and self-adjusting search trees, do some extra work to ensure that the insert, delete, and queryoperations can be done in O(logn) time, where n is the size of the tree. (In the �rstthree cases, the times are logarithmic in the worst case, and in the latter case they arelogarithmic in the amortized sense.) Balanced trees are discussed further in [Mehlhornand Tsakalidis 1989].In this section we show that the same logarithmic bounds hold in the average casewithout need for any balancing overhead. Our probability model assumes that the se-quence S of n elements s1, s2, : : : , sn is picked by random sampling from a real interval,or equivalently, as far as relative ordering is concerned, the elements form a random permu-tation of size n. The dynamic version of the problem, which corresponds to an average-caseamortized analysis, appears in Section 6.We de�ne BST to be the class of all binary search trees corresponding to permutations,BST = fBST (�) j � 2 Sng. We use K to denote the random variable describing the size

www.manaraa.com

52 / Average-Case Analysis of Algorithms and Data Structuresof the left subtree; that is, jS�j = K and jS>j = n� 1�K. By our probability model, thesplitting probabilities becomePrfK = kg = 1n; for 0 � k � n� 1. (22)One consequence of this is that not all trees in BST are equally likely to occur. For example,the perfectly balanced tree of three nodes (which occurs for � = 21 3 and � = 23 1) istwice as likely to occur as the tree for � = 12 3.The powerful valuation function method that we introduced in the last section appliesequally well to binary search trees. In this case, however, the nature of recurrence (21)suggests that we use EGFs of cumulative values (or equivalently OGFs of expected values).For VF v[t], we let vn be its expected value for trees of size n, and we de�ne v(z) to bethe OGF Pn�0 vnzn.Theorem 12. The sum and subtree product valuation functions are admissible for theclass BST of binary search trees:v[t] = u[t] + w[t] =) v(z) = u(z) + w(z);v[t] = u[t�] �w[t>] =) v(z) = Z z0 u(t)w(t) dt;where t� and t> denote the left and right subtrees of t.The subtree product VF typically results in an integral equation over the OGFs, whichby di�erentiation can be put into the form of a di�erential equation. This di�ers from theequations that resulted from Theorems 1 and 3, which we used in the last section for binaryand plane trees.A good illustration of these techniques is to compute the expected number of probes Cnper successful search on a random binary search tree of size n. We assume that each ofthe n elements is equally likely to be the object of the search. It is easy to see that Cnis equal to the expected internal path length pn, divided by n, plus 1, so it su�ces tocompute pn. The recursive de�nition of the corresponding VF p[t] isp[t] = jtj � 1 + �jtj=0 + p[t�] + p[t>]= jtj � 1 + �jtj=0 + p[t�] � I[t>] + I[t�] � p[t>]; (23a)where I[t] � 1 is the unit VF, whose OGF is I(z) = Pn�0 zn = 1=(1 � z). The size VFS[t] = jtj has OGF Pn�0 nzn = z=(1� z)2. Theorem 12 translates (23a) intop(z) = z2(1� z)2 + 2 Z z0 p(t)1� t dt: (23b)Di�erentiating (23b), we get a linear �rst-order di�erential equationp0(z)� 2p(z)1� z � 2z(1� z)3 = 0; (23c)which can be solved using the variation-of-parameter method (1.20) to getp(z) = �2 log(1� z) + z(1� z)2 = 2H 0(z)� 2(1 + z)(1� z)2 ;where H(z) = � log(1� z)=(1 � z) is the OGF of the Harmonic numbers. The followingtheorem results by extracting [zn] p(z):

www.manaraa.com

Section 4.2. Binary Search Trees / 53Theorem 13. The expected internal path length of a random binary search tree with ninternal nodes ispn = 2(n+ 1)Hn � 4n � 2n logn+ (2 � 4)n+O(logn):Theorem 13 shows that the average search time in a random binary search tree isabout 39 percent longer than in a perfectly balanced binary search tree.There is also a short ad hoc derivation of pn: In a random binary search tree, siis an ancestor of sj when si is the �rst element of fsminfi;jg; sminfi;jg+1; : : : ; smaxfi;jgginserted into the tree, which happens with probability 1=(ji � jj + 1). Thus we havepn =P1�i;j�n 1=(ji� jj+ 1), which readily yields the desired formula.The expected internal path length pn has direct application to other statistics ofinterest. For example, pn is the expected number of comparisons used to sort a sequenceof n elements by building a binary search tree and then performing an inorder traversal.The expected number Un of probes per unsuccessful search (which is also the averagenumber of probes per insertion, since insertions are preceded by an unsuccessful search) isthe average external path length EPn, divided by n+ 1. The well-known correspondenceEPn = IPn + 2n (24a)between the external path length EPn and the internal path length IPn of a binary treewith n internal nodes leads to Un = nn+ 1(Cn + 1); (24b)which readily yields an expression for Un via Theorem 13. We can also derive Un directlyas we did for Cn or via the use of PGFs. Yet another alternative is an ad hoc proof thatcombines (24b) with a di�erent linear relation between Un and Cn, namely,Cn = 1 + 1n X0�i�n�1Ui: (25)Eq. (25) follows from the observation that the n possible successful searches on a tree ofsize n retrace the steps taken during the n unsuccessful searches that were done when theelements were originally inserted.Quicksort. We can apply our valuation function machinery to the analysis of quicksort, asmentioned in Section 3.5. Let qn be the average number of comparisons used by quicksortto sort n elements. Quicksort works by choosing a partitioning element s (say, the �rstelement), dividing the �le into the part � s and the part > s, and recursively sortingeach sub�le. The process is remarkably similar to the recursive decomposition of binarysearch trees. The version of quicksort in [Knuth 1973b] and [Sedgewick 1977b] uses n+ 1comparisons to split the �le into two parts. (Only n� 1 comparisons are needed, but theextra two comparisons help speed up the rest of the algorithm in actual implementations.)The initial conditions are q0 = q1 = 0. The corresponding VF q[t] isq[t] = jtj+ 1� �jtj=0 � 2�jtj=1 + q[t�] + q[t>]= jtj+ 1� �jtj=0 � 2�jtj=1 + q[t�] � I[t>] + I[t�] � q[t>] (26a)

www.manaraa.com

54 / Average-Case Analysis of Algorithms and Data StructuresAs before, the OGFs for I[t] � 1 and S[t] = jtj are 1=(1 � z) and z=(1 � z)2. By thetranslation of Theorem 12, we getq(z) = z(1� z)2 + 11� z � 1� 2z + 2 Z z0 q(t)1� t dt; (26b)q0(z) = 2(1� z)3 � 2 + 2q(z)1� z : (26c)The linear di�erential equation (26c) can be solved via the variation-of-parameter methodto getq(z) = �2 log(1� z)(1� z)2 � 23(1� z)2 + 23(1� z) = 2H 0(z)� 83(1� z)2 + 23(1� z): (27a)We can then extract qn = [zn] q(z) to getqn = 2(n+ 1)�Hn+1 � 43� � 2n logn+ 2n� � 43�+ O(logn): (27b)In practice, quicksort can be optimized by stopping the recursion when the size of thesub�le is � m, for some parameter m. When the algorithm terminates, a �nal insertionsort is done on the �le. (We know from Section 3.2 that insertion sort is very e�cient whenthe number of inversions is small.) The analysis of quicksort can be modi�ed to give theaverage running time as a function of n and m. The optimum m can then be determined,as a function of n. This is done in [Knuth 1973b] and [Sedgewick 1977], where it is shownthat m = 9 is optimum in typical implementations once n gets large enough. The averagenumber of comparisons can be derived using the truncated VFqm[t] = �jtj>m(jtj+ 1) + qm[t�] � I[t>] + I[t�] � qm[t>] (28)(cf. (26a)). The truncated unit VF Im[t] = �jtj>m and the truncated size VF Sm[t] =�jtj>m jtj have the OGFs Pn>m zn = zm+1=(1 � z) and Pn>m nzn = �(m + 1)zm+1 �mzm+2�=(1� z)2, respectively. The rest of the derivation proceeds as before (and shouldbe done with a symbolic algebra system); the result (cf. (27b)) isqm;n = 2(n+ 1)�Hn+1 �Hm+2 + 12� : (29)Height of Binary Search Trees. The analysis of the height of binary search treesinvolves interesting equations over generating functions. By analogy with (12), let G[h]ndenote the probability that a random binary search tree of size n has height � h. Thecorresponding VF G[h][t] = �height t�h is of the formG[h+1][t] = �jtj=0 +G[h][t�] �G[h][t>]: (30a)Theorem 12 translates this intoG[h+1](z) = 1 + Z z0 �G[h](t)�2 dt; (30b)

www.manaraa.com

Section 4.2. Binary Search Trees / 55where G[0](z) = 1 and G(z) = G[1](z) = 1=(1 � z). The sequence fG[h](z)gh�0 forms asequence of Picard approximants to G(z). The OGF for the expected height isH(z) =Xh�0�G(z)�G[h](z)� : (31)It is natural to conjecture that H(z) has the singular expansionH(z) � c1� z log 11� z ; (32)as z ! 1, for some constant c, but no one has succeeded so far in establishing it directly.Devroye [1986a] has determined the asymptotic form of Hn using the theory of branchingprocesses:Theorem 14 [Devroye 1986a]. The expected height Hn of a binary search tree of size n is� c logn, where c = 4:311070 : : : is the root � 2 of the equation (2e=c)c = e.Theorems 13 and 14 point out clearly that a random binary search tree is fairlybalanced, in contrast to the random binary trees B we studied in Section 4.1. The expectedheight and path lengths of binary search trees are O(logn) and O(n logn), whereas byTheorem 2 the corresponding quantities for binary trees are O(pn) and O(npn).Interesting problems in average-case analysis also arise in connection with balancedsearch trees, but interest is usually focused on storage space rather than running time.For example, a fringe analysis is used in [Yao 1978] and [Brown 1979] to derive upper andlower bounds on the expected storage utilization and number of balanced nodes in random2-3 trees and B-trees. These techniques can be extended to get better bounds, but thecomputations become prohibitive.Multidimensional Search Trees. The binary search tree structure can be generalizedin various ways to two dimensions. The most obvious generalization, called quad trees, usesinternal nodes of degree 4. The quad tree for a sequence S = s1, s2, : : : , sn of n insertedelements is de�ned byQ(S) = �
s1; Q(S>;>); Q(S�;>); Q(S�;�); Q(S>;�)�; if jSj � 1;h i; if jSj = 0. (33)Here each element s in S is a two-dimensional number, and the four quadrants determinedby s are denoted S>;>, S�;>, S�;�, and S>;�. Quad trees support general range searching,and in particular partially speci�ed queries of the form \Find all elements s = (sx; sy) withsx = c." The search proceeds recursively to all subtrees whose range overlaps the queryrange.Theorem 15 [Flajolet et al 1989]. The expected number of comparisons Cn for a partiallyspeci�ed query in a quad tree of size n is bn(p17�3)=2 + O(1), where b is a positive realnumber.Proof Sketch. The splitting probabilities for quad trees are not in as simple a form asin (22), but they can be determined readily. By use of the appropriate VF c[t], we getcn = 1 + 4n(n+ 1) X0�`�n�1 X0�k�` ck: (34a)

www.manaraa.com

56 / Average-Case Analysis of Algorithms and Data StructuresIn terms of the OGF d(z) = zc(z), this becomes a second-order di�erential equationd00(z)� 4z(1� z)2 d(z) = 2(1� z)3 : (34b)It is not clear how to solve explicitly for d(z), but we can get asymptotic estimates for dnbased upon the fact that d(z) � a(1 � z)��, as z ! 1, for some positive real a and �.We cannot determine a in closed form in general for this type of problem, but � can bedetermined by substituting a(1� z)�� into (34b) to get the \indicial equation"�(�+ 1)� 4 = 0; (35)whose positive solution is � = (p17 � 1)=2. The transfer lemma (Theorem 2.3) gives usour �nal result.Quad trees can be generalized to k dimensions, k � 2, but the degrees of the nodesbecome 2k, which is too large to be practical. A better alternative, called k{d trees, is abinary search tree in which the splitting at each node on level i, i � 0, is based uponordinate i mod k + 1 of the element stored there.Theorem 16 [Flajolet and Puech 1986]. The expected number of elementary compar-isons needed for a partially speci�ed query in a k{d tree of size n, in which s of thek �elds are speci�ed, is � an1�s=k+#(s=k), where #(u) is the root # 2 [0; 1] of the equation(#+ 3� u)u(#+ 2� u)1�u � 2 = 0.Proof Sketch. The proof proceeds by �rst developing a system of integral equations forthe OGFs of expected costs using the appropriate VFs and applying Theorem 12. Thisreduces to a di�erential system of order 2k � s. It cannot be solved explicitly in terms ofstandard transcendental functions, but a singularity analysis can be done to get the result,based upon a generalization of the approach for quad trees.Data structures for multidimensional search and applications in computational geom-etry are given in [Yao 1989].Heap-Ordered Trees. We conclude this section by considering heap-ordered trees, inwhich the value of the root node of each subtree is � the values of the other elements inthe subtree. We discussed the classical array representation of a perfectly balanced heap inconnection with the heapsort algorithm in Section 3.5. Heap-ordered trees provide e�cientimplementations of priority queues, which support the operations insert , �nd min, anddelete min. Additional operations sometimes include merge and decrease key . Pagodas[Fran�con, Viennot, Vuillemin 1978] are a direct implementation of heap-ordered trees thatalso support the merge operation.For the sequence S of n elements s1, s2, : : : , sn, we de�ne HOT (S) to be the (canon-ical) heap-ordered tree formed by S. It has the recursive de�nitionHOT (S) = �
HOT (Sleft); smin(S); HOT (Sright)�; if jSj � 1;h i; if jSj = 0. (36)where min(S) is the index of the rightmost smallest element in S, Sleft is the initial sub-sequence s1, : : : , smin(S)�1, and Sright is the �nal subsequence smin(S)+1, : : : , sn. We

www.manaraa.com

Section 4.3. Radix-Exchange Tries / 57assume in our probability model that S is a random permutation of n elements. Analy-sis of parameters of heap-ordered trees and pagodas is similar to the analysis of binarysearch trees, because of the following equivalence principle due to W. Burge [Burge 1972],[Vuillemin 1980]:Theorem 17. For each pair of inverse permutations � and ��1, we haveBST (�) �shape HOT (��1);where t �shape u means that the unlabeled trees associated with trees t and u are identical.For purposes of analysis, any parameter of permutations de�ned inductively overthe associated heap-ordered tree can thus be analyzed using the admissibility rules ofTheorem 12 for binary search trees. Heap-ordered trees in the form of cartesian trees canalso be used to handle a variety of 2-dimensional search problems [Vuillemin 1980].4.3. Radix-Exchange TriesRadix-exchange tries are binary search trees in which the elements are stored in the externalnodes, and navigation through the trie at level i is based upon the ith bit of the searchargument. Bit 0 means \go left," and bit 1 means \go right." We assume for simplicitythat each element is a real number in [0; 1] of in�nite precision. The trie TR(S) for a set Sof elements is de�ned recursively byTR(S) = 8><>:
TR(S0); ; TR(S1)�; if jSj > 1;h i; if jSj = 1;h;i; if jSj = 0, (37)where S0 and S1 are de�ned as follows: If we take the elements in S that have 0 as their�rst bit and then throw away that bit, we get S0, the elements in the left subtrie. Theset S1 of elements in the right subtrie is de�ned similarly for the elements starting witha 1 bit. The elements are stored in the external nodes of the trie. When S has a singleelement s, the trie consists of the external node with value s; an empty trie is representedby the null external node ;. The size of the trie is the number of external nodes.The trie TR(S) does not depend upon the order in which the elements in S areinserted; this is quite di�erent from the case of binary search trees, where order can makea big di�erence upon the shape of the tree. In tries, the shape of the trie is based uponthe distribution of the elements' values.We use the probability model that the values of the elements are independent anduniform in the real interval [0; 1]. We de�ne the class of all tries to be TR. The probabilitythat a trie of n elements has a left subtrie of size k and a right subtrie of size n� k is theBernoulli probability pn;k = 12n�nk�: (38)This suggests that we use EGFs of expected values to represent trie statistics. We denotethe expected value of VF v[t] among trees of size n by vn and the EGF Pn�0 vnzn=n!by v(z). The admissibility theorem takes yet another form:

www.manaraa.com

58 / Average-Case Analysis of Algorithms and Data StructuresTheorem 18. The sum and subtree product valuation functions are admissible for theclass TR of tries: v[t] = u[t] + w[t] =) v(z) = u(z) + w(z);v[t] = u[t0] � w[t1] =) v(z) = u�z2�w �z2� ;where t0 and t1 represent the left and right subtries of t.A framework for the analysis of tries via valuation functions is given in [Flajolet,R�egnier, and Sotteau 1985]. In typical cases, the EGFs for the VFs that we encounter arein the form of di�erence equations that we can iterate.The expected number of bit inspections per successful search in a trie with n externalnodes is equal to the expected external path length pn, divided by n. The following theoremshows that the search times are logarithmic, on the average, when no balancing is done.Theorem 19 [Knuth 1973b]. The average external path length pn of a random trie ofsize n is pn = n log2 n + �= log 2 + 12 + R(log2 n)�n + O(pn), where R(u) is a periodicfunction of small amplitude with period 1 and mean value 0.Proof. The VF corresponding to external path length isp[t] = jtj � �jtj=1 + p[t0] � I[t1] + I[t0] � p[t1]: (39a)The unit VF I[t] � 1 has EGF Pn�0 zn=n! = ez , and the size VF S[t] = jtj has EGFPn�0 nzn=n! = zez . By Theorem 18, (39a) translates top(z) = zez � z + 2ez=2p�z2� : (39b)By iterating the recurrence and then extracting coe�cients, we getp(z) = zXk�0�ez � ez(1�1=2k)� ; (39c)pn = nXk�0 1� �1� 12k�n�1! : (39d)It is easy to verify the natural approximation pn � nP (n), where P (x) is the harmonicsum P (x) =Xk�0�1� e�x=2k� : (40)We have already derived the asymptotic expansion of P (x), as x ! 1, by use of Mellintransforms in (2.28). The result follows immediately.Theorem 19 generalizes to the biased case, where the bits of each element are inde-pendently 0 with probability p and 1 with probability q = 1�p. The average external pathlength is asymptotically (n logn)=H, whereH is the entropy functionH = �p log p�q log q.In the case of unsuccessful searches, a similar approach shows that the average number of

www.manaraa.com

Section 4.3. Radix-Exchange Tries / 59bit inspections is � (logn)=H. The variance is O(1) with uctuation in the unbiased case[Jacquet and R�egnier 1986], [Kirschenhofer and Prodinger 1986]. Variance estimates in thisrange of problems involve interesting connections with modular functions [Kirschenhoferand Prodinger 1988]. The variance increases to � c logn+O(1), for some constant c, in thebiased case [Jacquet and R�egnier 1986]. The limiting distributions are studied in [Jacquetand R�egnier 1986] and [Pittel 1986]. The height of a trie has mean � 2 log2 n and vari-ance O(1) [Flajolet 1983]. Limiting distributions of the height are studied in [Flajolet 1983]and [Pittel 1986].Another important statistic on tries, besides search time, is storage space. Unlikebinary search trees, the amount of auxiliary space used by tries, measured in terms ofthe number of internal nodes, is variable. The following theorem shows that the averagenumber of internal nodes in a trie is about 44 percent more than the number of elementsstored in the trie.Theorem 20 [Knuth 1973b]. The expected number in of internal nodes in a randomunbiased trie with n external nodes is (n= log 2)�1+Q(log2 n)�+O(pn), where Q(u) is aperiodic function of small amplitude with period 1 and mean value 0.Proof. The VF corresponding to the number of internal nodes isi[t] = �jtj>1 + i[t0] � I[t1] + I[t0] � i[t1]: (41a)Theorem 18 translates this toi(z) = ez � 1� z + 2ez=2i�z2� : (41b)By iterating the recurrence and then extracting coe�cients, we geti(z) =Xk�0 2k �ez � �1 + z2k � e(1�1=2k)z� ; (41c)in =Xk�0 2k 1� �1� 12k�n � n2k �1� 12k�n�1! : (41d)We can approximate in to within O(pn) in a natural way by S(n), whereS(x) =Xk�0 2k �1� e�x=2k �1 + x2k �� : (42a)Equation (42a) is a harmonic sum, and its Mellin transform S�(s) can be computed readily:S�(s) = (s+ 1)�(s)1� 2s+1 ; (42b)where the fundamental strip of S�(s) is h�2;�1i. The result follows by computing theresidues in the right half-plane <(s) � �1. There is a simple pole at s = 0 due to �(s)and poles at �1 + 2k�i= log 2 due to the denominator of (42b).

www.manaraa.com

60 / Average-Case Analysis of Algorithms and Data StructuresIn the biased case, the expected number of internal nodes is � n=H. The variancefor both the unbiased and biased case is O(n), which includes a uctuating term [Jacquetand R�egnier 1987]; the distribution of the number of internal nodes is normal [Jacquet andR�egnier 1986].Theorem 20, as do a number of the results about tries, generalizes to the case in whicheach external node in the trie represents a page of secondary storage capable of storingb � 1 elements. Such tries are generally called b-tries. The analysis uses truncated VFs,as in the second quicksort example in Section 4.2, to stop the recursion when the subtriehas � b elements. The result applies equally well to the extendible hashing scheme of [Faginet al 1979], where the trie is built upon the hashed values of the elements, rather than uponthe elements themselves. Extendible hashing will be considered further in Section 5.1.Theorem 21 [Knuth 1973b]. The expected number of pages of capacity b needed to store a�le of n records using b-tries or extendible hashing is �n=(b log 2)��1+R(log2 n)�+O(pn),where R(u) is periodic with period 1 and mean value 0.Patricia Tries. Every external node in a trie of size � 2 has a sibling, but that is notgenerally the case for internal nodes. A more compact form of tries, called Patricia tries,can be obtained by collapsing the internal nodes with no sibling. Statistics on Patriciatries are analyzed in [Knuth 1973b] and [Kirschenhofer and Prodinger 1986].Radix-Exchange Sorting. It is no accident that radix-exchange tries and the radix-exchange sorting algorithm have a common name. Radix-exchange sorting is related totries in a way very similar to how quicksort is related to binary search trees, except that therelationship is even closer. All the average-case analyses in this section carry over to theanalysis of radix-exchange sorting: The distribution of the number of partitioning stagesused by radix-exchange sorting to sort n numbers is the same as the distribution of thenumber of internal nodes in a trie, and the distribution of the number of bit inspectionsdone by radix-exchange sorting is same as the distribution of the external path length ofa trie.4.4. Digital Search TreesDigital search trees are like tries except that the elements are stored in the internal nodes,or equivalently they are like binary search trees except that the branching at level i isdetermined by the (i+ 1)st bit rather than by a full element-to-element comparison. Thedigital search tree DST (S) for a sequence S of inserted elements is de�ned recursively byDST (S) = �
DST (S0); s1; DST (S1)�; if jSj � 1;h i; if jSj = 0, (43)where s1 is the �rst element of S, and the sequence S0 of elements in the left subtree isformed by taking the elements in S � fs1g that have 0 as the �rst bit and then throwingaway the �rst bit. The sequence S1 for the right subtree is de�ned symmetrically for theelements with 1 as their �rst bit. Like binary search trees, the size of the tree is its numberof internal nodes, and its shape is sensitive to the order in which the elements are inserted.

www.manaraa.com

Section 4.4. Digital Search Trees / 61The empty digital search tree is denoted by the external node . Our probability modelis the same as for tries, except that the probability that a tree of n elements has a leftsubtree of size k and a right subtree of size n�k�1 is �n�1k �=2n�1. The class of all digitalsearch trees is denoted DST .The nature of the decomposition in (43) suggests that we use EGFs of expectationsin our analysis, as in the last section, but the admissibility theorem takes a di�erent form:Theorem 22. The sum and subtree product valuation functions are admissible for theclass DST of digital search trees:v[t] = u[t] + w[t] =) v(z) = u(z) + w(z);v[t] = u[t0] � w[t1] =) v(z) = Z z0 u� t2�w� t2� dt;where t0 and t1 denote the left and right subtrees of t.Tries are preferred in practice over digital search trees, since the element comparisondone at each node in a digital search tree takes longer than the bit comparison done in a trie,and the elements in a trie are kept in sorted order. We do not have space in this manuscriptto include the relevant analysis; instead we refer the reader to [Knuth 1973b], [Konheim andNewman 1973], [Flajolet and Sedgewick 1986], and [Kirschenhofer and Prodinger 1986].The key di�erence between the analysis of digital search trees and the analysis of triesin the last section is that the equations over the EGFs that result from Theorem 22 aretypically di�erence-di�erential equations, to which the Mellin techniques that worked sowell for tries cannot be applied directly. Instead the asymptotics come by an applicationdue to S. O. Rice of the following classical formula from the calculus of �nite di�erences;the proof of the formula is an easy application of Cauchy's formula.Theorem 23. Let C be a closed curve encircling the points 0, 1, : : : , n, and let f(z) beanalytic inside C. Then we haveXk �nk�(�1)kf(k) = 12�i ZC B(n+ 1;�z)f(z) dz;where B(x; y) = �(x)�(y)=�(x+ y) is the classical Beta function.Theorem 24 [Knuth 1973b], [Konheim and Newman 1973]. The expected internal pathlength of a random digital search tree is(n+ 1) log2 n+ � � 1log 2 + 12 � �+ P (log2 n)�n+ O(pn);where = 0:57721 : : : is Euler's constant, � = 1 + 13 + 17 + 115 + � � � = 1:606695 : : :, andP (u) is a periodic function with period 1 and very small amplitude.

www.manaraa.com

62 / Average-Case Analysis of Algorithms and Data Structures5. Hashing and Address Computation TechniquesIn this section we consider several well-known hashing algorithms, including separate chain-ing, coalesced hashing, uniform probing, double hashing, secondary clustering, and linearprobing, and we also discuss the related methods of interpolation search and distributionsorting. Our machine-independent model of search performance for hashing is the numberof probes made into the hash table during the search. We are primarily interested in theexpected number of probes per search, but in some cases we also consider the distribu-tion of the number of probes and the expected maximum number of probes among all thesearches in the table.With hashing, searches can be performed in constant time, on the average, regardlessof the number of elements in the hash table. All hashing algorithms use a pre-de�ned hashfunction hash : fall possible elementsg ! f1; 2; : : : ;mg (1)that assigns a hash address to each of the n elements. Hashing algorithms di�er from oneanother in how they resolve the collision that results when an element's hash address isalready occupied. The two main techniques for resolving collisions are chaining (in whichlinks are used to explicitly link together elements with the same hash address) and openaddressing (where the search path through the table is de�ned implicitly). We study thesetwo classes of hashing algorithms in the next two sections.We use the Bernoulli probability model for our average-case analysis: We assumethat all mn possible sequences of n hash addresses (or hash sequences) are equally likely.Simulation studies con�rm that this is a reasonable assumption for well-designed hashfunctions. Further discussion of hash functions, including universal hash functions, appearsin [Mehlhorn and Tsakalidis 1989]. We assume that an unsuccessful search can begin atany of the m slots in the hash table with equal probability, and the object of a successfulsearch is equally likely to be any of the n elements in the table. Each insertion is typicallypreceded by an unsuccessful search to verify that the element is not already in the table,and so for simplicity we shall identify the insertion time with the time for the unsuccessfulsearch. We denote the expected number of probes per unsuccessful search (or insertion)in a hash table with n elements by Un, and the expected number of probes per successfulsearch by Cn.

www.manaraa.com

Section 5.1. Bucket Algorithms and Hashing by Chaining / 635.1. Bucket Algorithms and Hashing by ChainingSeparate Chaining. One of the most obvious techniques for resolving collisions is to linktogether all the elements with the same hash address into a list or chain. The generic namefor this technique is separate chaining. The �rst variant we shall study stores the chains inauxiliary memory; the ith slot in the hash table contains a link to the start of the chain ofelements with hash address i. This particular variant is typically called indirect chaining ,because the hash table stores only pointers, not the elements themselves.Search time clearly depends upon the number of elements in the chain searched. Foreach 1 � i � m, we refer to the set of elements with hash address i as the ith bucket. Wede�ne mnXi (or simply Xi) in the Bernoulli model to be the RV describing the number ofelements in bucket i. This model is sometimes called the urn model, and the distributionof Xi is called the occupancy distribution. Distributions of this sort appear in the analysesof each of the chaining algorithms we consider in this section, and they serve to unify ouranalyses. Urn models were discussed in Section 1.3.An unsuccessful search on a chain of length k makes one probe per element, plus oneprobe to �nd the link to the beginning of the chain. This allows us to express the expectednumber of probes per unsuccessful search asUn = E� 1m X1�i�m(1 +Xi)�: (2a)By symmetry, the expected values EfXig are the same for each 1 � i � m, so we canrestrict our attention to one particular bucket, say, bucket 1. (For simplicity, we shallabbreviate X1 by X.) Eq. (2a) simpli�es toUn = 1 + EfXg: (2b)For successful searches, each chain of length k contributes 2+3+� � �+(k+1) = 3k=2+k2=2probes. The expected number of probes per successful search is thusCn = E� 1n X1�i�m�32Xi + 12Xi2�� = mn �32EfXg+ 12EfX2g� : (3)We can compute (2b) and (3) in a uni�ed way via the PGFX(u) =Xk�0PrfX = kguk: (4)Eqs. (2b) and (3) for Un and Cn are expressible simply in terms of derivatives of X(u):Un = 1 +X 0(1); Cn = mn �2X 0(1) + 12X 00(1)� : (5)We shall determine X(u) by extending the admissible constructions we developed inSection 1.3 for the urn model. This approach will be especially useful for our analyses

www.manaraa.com

64 / Average-Case Analysis of Algorithms and Data Structureslater in this section of the maximum bucket occupancy, extendible hashing, and coalescedhashing. We consider the hash table as the m-ary partitional product of the individualbuckets H = B � B � � � � � B: (6a)The new twist here is that some of the elements in the table are \marked" accordingto some rule. (We shall explain shortly how this relates to separate chaining.) We letHk;n;m be the number of mn hash sequences for which k of the elements are marked, andwe denote its EGF by bH(u; z) = Xk;n�0Hk;n;muk znn! : (6b)By analogy with Theorem 1.4 for EGFs, the following theorem shows that the partitionalproduct in (6a) translates into a product of EGFs; the proof is similar to that of Theo-rem 1.4 and is omitted for brevity.Theorem 1. If the number of marked elements in bucket i is a function of only thenumber of elements in bucket i, then the EGF bH(u; z) = Pk;n�0Hk;n;mukzn=n! can bedecomposed into bH(u; z) = bB1(u; z) � bB2(u; z) � : : : � bBm(u; z); (6c)where bBi(u; z) =Xt�0 ufi(t) ztt! ; (6d)and fi(t) is the number of marked elements in bucket i when there are t elements in bucket i.We are interested in the number of elements in bucket 1, so we adopt the marking rulethat all elements in bucket 1 are marked, and the other elements are left unmarked. Interms of Theorem 1, we have f1(t) = t and bB1(u; z) =Pt�0 utzt=t! = euz for bucket 1, andfi(t) = 0 and bBi(u; z) = Pt�0 zt=t! = ez for the other buckets 2 � i � m. Substitutingthis into Theorem 1, we have bH(u; z) = e(m�1+u)z : (7a)We can obtain the EGF ofX(u) by dividing eachHk;n;m term in (6b) bymn, or equivalentlyby replacing z by z=m. Combining this with (7a) givesbH �u; zm� =Xn�0X(u)znn! = e(m�1+u)z=m: (7b)Hence, we haveX(u) = �m� 1 + um �n ; X 0(1) = nm ; X 00(1) = n(n� 1)m2 : (7c)We get the following theorem by substituting the expressions for X 0(1) and X 00(1) into (5);the term � = n=m is called the load factor.

www.manaraa.com

Section 5.1. Bucket Algorithms and Hashing by Chaining / 65Theorem 2. The expected number of probes per unsuccessful and successful search forindirect chaining, when there are n elements in a hash table of m slots, isUn = 1 + nm = 1 + �; Cn = 2 + n� 12m � 2 + �2 : (8)We can also derive (8) in an ad hoc way by decomposing X into the sum of n inde-pendent 0{1 RVs X = x1 + x2 + � � �+ xn; (9)where xi = 1 if the ith element goes into bucket i, and xi = 0 otherwise. Each xi has thesame distribution as m1X1, and its PGF is clearly (m� 1+ u)=m. Since the PGF of a sumof independent RVs is equal to the product of the PGFs, we get Eq. (7c) for X(u). Wecan also derive the formula for Cn from the one for Un by noting that Eq. (4.25) for binarysearch trees holds for separate chaining as well.Examples. 1. Direct chaining. A more e�cient version of separate chaining, calleddirect chaining, stores the �rst element of each chain directly in the hash table itself. Thisshortens each successful search time by one probe, and the expected unsuccessful searchtime is reduced by PrfX > 0g = 1�X(0) = 1� (1� 1=m)n � 1� e�� probes. We getUn = �1� 1m�n + nm � e�� + �; Cn = 1 + n� 12m � 1 + �: (10)2. Direct chaining with relocation. The above variant is wasteful of hash table slots,because auxiliary space is used to store colliders even though there might be empty slotsavailable in the hash table. (And for that reason, the load factor � = n=m de�ned above isnot a true indication of space usage.) The method of direct chaining with relocation storesall elements directly in the hash table. A special situation arises when an element x withhash address hash(x) collides during insertion with another element x0. If x0 is the �rstelement in its chain, then x is inserted into an empty slot in the table and linked to the endof the chain. Otherwise, x0 is not at the start of the chain, so x0 is relocated to an emptyslot in order to make room for x; the link to x0 from its predecessor in the chain mustbe updated. The successful search time is the same as before. Unsuccessful searches canstart in the middle of a chain; each chain of length k > 0 contributes k(k + 1)=2 probes.A search starting at one of the m� n empty slots takes one probe. This gives usUn = X 0(1) + 12X 00(1) + Prfslot hash(x) is emptyg = 1 + n(n� 1)2m2 � 1 + �22 : (11)The main di�culty with this algorithm is the overhead of moving elements, which can beexpensive for large record elements and might not be allowed if there are pointers to theelements from outside the hash table. Updating the previous link requires either the use ofbidirectional or circular chains or recomputing the hash address of x0 and following linksuntil x0 is reached. None of these alternatives is attractive, and we shall soon consider abetter alternative called coalesced hashing, which has nearly the same number of probesper search, but without the overhead.

www.manaraa.com

66 / Average-Case Analysis of Algorithms and Data StructuresDistribution Sorting. Bucketing can also be used to sort e�ciently in linear time whenthe values of the elements are smoothly distributed. Suppose for simplicity that the n val-ues are real numbers in the unit interval [0; 1). The distribution sort algorithm works bybreaking up the range of values into m buckets [0; 1m), [1m ; 2m), : : : , [m�1m ; 1); the elementsare partitioned into the buckets based upon their values. Each bucket is sorted using se-lection sort (cf. Section 3.5) or some other simple quadratic sorting method. The sortedbuckets are then appended together to get the �nal sorted output.Selection sort uses �k2� comparisons to sort k elements. The average number of com-parisons Cn used by distribution sort is thusCn = E� X1�i�m�Xi2 �� = X1�i�mE�Xi(Xi � 1)2 � = 12 X1�i�mX 00i (1): (12a)By (7c), we have Cn = n(n� 1)=(2m) when the values of the elements are independentlyand uniformly distributed. The other work done by the algorithm takes O(n +m) time,so this gives a linear-time sorting algorithm when we choose m = �(n). (Note that thisdoes not contradict the well-known
(n logn) lower bound on the average sorting time inthe comparison model, since this is not a comparison-based algorithm.)The assumption that the values are independently and uniformly distributed is notalways easy to justify, unlike for the case of hashing, because there is no hash function toscramble the values; the partitioning is based upon the elements' raw values. Suppose theelements are independently distributed according to density function f(x). In the followinganalysis, suggested by R. M. Karp [Knuth 1973b, 5.2.1{38], [Devroye 1986b], we assumethat R 10 f(x)2 dx <1, which assures that f(x) is well-behaved. For each n we choose m sothat n=m! �, for some positive constant �, as n!1. We de�ne pi = RAi f(x) dx to bethe probability that an element falls into the ith bucket Ai = [i�1m ; im). For general f(x),Eq. (7c) for Xi(u) becomes Xi(u) = �(1� pi) + piu�n: (12b)By (12a) and (12b) we haveCn = �n2� X1�i�m pi2 = �n2� X1�i�m�ZAi f(x) dx�2: (12c)The last summation in (12c) can be bounded by an application of Jensen's inequality,treating f(x) as a RV with x uniformly distributed:X1�i�m�ZAi f(x) dx�2 = 1m2 X1�i�m�ZAi f(x) d(mx)�2� 1m2 X1�i�m ZAi f(x)2 d(mx)= 1m Z 10 f(x)2 dx: (12d)

www.manaraa.com

Section 5.1. Bucket Algorithms and Hashing by Chaining / 67We can show that the upper bound (12d) is asymptotically tight by computing a corre-sponding lower bound. We haven X1�i�m�ZAi f(x) dx�2 = nm Z 10 fn(x)2 dx;where fn(x) = mpi, for x 2 Ai, is the histogram approximation of f(x), which convergesto f(x) almost everywhere. By Fatou's lemma, we get the lower boundlim infn!1 nm Z 10 fn(x)2 dx = � lim infn!1 Z 10 fn(x)2 dx � � Z 10 lim infn!1 fn(x)2 dx = �Z 10 f(x)2 dx:Substituting this approximation and (12d) into (12c), we �nd that the average number ofcomparisons is Cn � �n2 Z 10 f(x)2 dx: (12e)The coe�cient of the linear term in (12e) is proportional to R 10 f(x)2 dx, which canbe very large. The erratic behavior due to nonuniform f(x) can be alleviated by one levelof recursion, in which the above algorithm is used to sort the individual buckets: Let usassume that m = n. If the number Xi of elements in bucket i is more than 1, we sort thebucket by breaking up the range [i�1n ; in) into Xi subbuckets, and proceed as before. Thesurprising fact, which can be shown by techniques similar to those above, is that Cn isbounded by n=2 in the limit, regardless of f(x) (assuming of course that our assumptionR 10 f(x)2 dx <1 is satis�ed).Theorem 3 [Devroye 1986b]. The expected number of comparisons Cn done by two-levelbucketing to sort n elements that are independently distributed with density function f(x),which satis�es R 10 f(x)2 dx <1, isCn � n2 Z 10 e�f(x) dx � n2 :The variance and higher moments of the number of probes are also small. If the unitinterval assumption is not valid and the values of the elements are not bounded, we canrede�ne the interval to be [xmin; xmax] and apply the same basic idea given above. Theanalysis becomes a little more complicated; details appear in [Devroye 1986b].For the actual implementation, a hashing scheme other than separate chaining can beused to store the elements in the table. Sorting with linear probing is discussed at the endof the section. An application of bucketing to fast sorting on associative secondary storagedevices appears in [Lindstrom and Vitter 1985]. A randomized algorithm that is optimalfor sorting with multiple disks is given in [Vitter and Shriver, 1990].Interpolation Search. Newton's method and the secant method are well-known schemesfor determining the leading k bits of a zero of a continuous function f(x) in O(log k) itera-tions. (By \zero," we mean a solution x to the equation f(x) = 0.) Starting with an initialapproximation x0, the methods produce a sequence of re�ned approximations x1, x2, : : :that converge to a zero x�, assuming that f(x) is well-behaved. The discrete analogue iscalled interpolation search, in which the n elements are in a sorted array, and the goal isto �nd the element x� with a particular value c. Variants of this method are discussed in[Mehlhorn and Tsakalidis 1989].

www.manaraa.com

68 / Average-Case Analysis of Algorithms and Data StructuresTheorem 4 [Yao and Yao 1976], [Gonnet, Rogers, and George 1980]. The averagenumber of comparisons per successful search using interpolation search on a sorted ar-ray is � log2 log2 n, assuming that the elements' values are independently and identicallydistributed.This bound is similar to that of the continuous case; we can think of the accuracy k asbeing log2 n, the number of bits needed to specify the array position of x�. A more detailedprobabilistic analysis connecting interpolation search with Brownian motion appears in[Louchard 1983].Proof Sketch. We restrict ourselves to considering the upper bound. Gonnet, Rogers,and George [1980] show by some probabilistic arguments that the probability that at leastk probes are needed to �nd x� is bounded bypk(t) = Y1�i�k�1� 12e�t2�i� ; (13a)where t = log(�n=8). Hence, the expected number of probes is bounded byF (t) =Xk�0 pk(t); (13b)which can be expressed in terms of the harmonic sumF (t) = 1Q(t)Xk�0Q(t2k); (13c)where Q(t) =Yi�1�1� 12e�t2�i��1 : (13d)The sum in (13c) is a harmonic sum to which Mellin transforms can be applied to getF (t) � log2 t+ �+ P (log2 t) + o(1); as t!1; (13e)where � is a constant and P (u) is a periodic function associated with the poles at �k =2k�i= log 2. The log2 log2 n bound follows by substituting t = log(�n=8) into (13e).Maximum Bucket Occupancy. An interesting statistic that lies between average-caseand worst-case search times is the expected number of elements in the largest bucket (alsoknown as the maximum bucket occupancy). It has special signi�cance in parallel processingapplications in which elements are partitioned randomly into buckets and then the bucketsare processed in parallel, each in linear time; in this case, the expected maximum bucketoccupancy determines the average running time.We can make use of the product decomposition (6a) and Theorem 1 to count thenumber of hash sequences that give a hash table with � b elements in each bucket. Wemark all the elements in a bucket if the bucket has > b elements; otherwise, the elements are

www.manaraa.com

Section 5.1. Bucket Algorithms and Hashing by Chaining / 69left unmarked. In this terminology, our quantity of interest is simply the number H0;n;mof hash sequences with no marked elements:H0;n;m = n! �u0zn� bH(u; z)= n! [zn] bH(0; z)= n! [zn] � bB1(0; z) � bB2(0; z) � : : : � bBm(0; z)�; (14a)where bBi(0; z) = X0�n�b znn! ; (14b)for 1 � i � m. The sum in (14b) is the truncated exponential, which we denote by eb(z).Hence, the number of hash sequences with � b elements per bucket isH0;n;m = n! [zn] �eb(z)�m: (14c)We use q[b]n to denote the probability that a random hash sequence puts at most b ele-ments into each bucket. As in (7b), we can convert from the enumeration H0;n;m to theprobability q[b]n by replacing z in (14c) by z=m:q[b]n = n! [zn]�eb � zm��m : (14d)There is a close relation between the EGF of Bernoulli statistics and the correspondingPoisson statistic:Theorem 5. If bg(z) = Pn�0 gnzn=n! is the EGF for a measure gn (for example, prob-ability, expectation, moment) in the Bernoulli model, then e�� bg(�) is the correspondingmeasure if the total number of elements X1 + � � �+Xm is Poisson with mean �.Proof. The measure in the Poisson model is the conditional expectation of the measurein the Bernoulli model, namely,Xn�0 gn PrfX1 + � � �+Xm = ng =Xn�0 gn e���nn! = e��bg(�):We shall use Theorem 5 and direct our attention to the Poisson model, where thenumber of elements in each bucket is Poisson distributed with mean �, and hence thetotal number of elements is a Poisson RV with mean m�. (The analysis of the Bernoullicase can be handled in much the same way that we shall handle the analysis of extendiblehashing later in this section, so covering the Poisson case will present us with a di�erentperspective.)We letM� denote the maximum number of elements per bucket in the Poisson model,and we use p[b]� to denote the probability that M� � b. By Theorem 5, we havep[b]� = �e��eb(�)�m :

www.manaraa.com

70 / Average-Case Analysis of Algorithms and Data Structures(This can also be derived directly by noting that the m buckets are independent and thatthe Poisson probability that a given bucket has � b elements is e��eb(�).) What we wantis to compute the expected maximum bucket occupancyM� =Xb�1 b(p[b]� � p[b�1]�) =Xb�0(1� p[b]�): (15)We shall consider the case � = o(logm) (although the basic principles of our analysiswill apply for any �). A very common occurrence in occupancy RVs is a sharp rise in thedistribution p[b]� from � 0 to � 1 in the \central region" near the mean value. Intuitively,a good approximation for the mean is the value ~b such that p[~b]� is su�ciently away from 0and 1. We choose the value ~b > � such thate���~b+1(~b+ 1)! � 1m < e���~b~b! : (16a)When � = �(1), it is easy to see from (16) that ~b � ��1(m) � (logm)= log logm. (Here��1(y) denotes the inverse of the Gamma function �(x).) We de�ne � using the left-handside of (16a) so that e���~b+1(~b+ 1)! = �m: (16b)In particular we have �=(~b+1) < � � 1. The following bound illustrates the sharp increasein p[b]� as a function of b in the vicinity b � ~b:p[~b+k]� = �e��e~b+k(�)�m = �1� e�� Xb>~b+k �bb! �m� 1� e���~b+k+1(~b+ k + 1)!!m � �1� ��km~bk�m � e���k=~bk : (17)The approximation is valid uniformly for k = o�p~b �. The expression 1� p[~b+k]� continuesto decrease exponentially as k !1. The maximum bucket size is equal to ~b with proba-bility � e�� and to ~b+ 1 with probability � 1� e��. The net e�ect is that we can get anasymptotic approximation for M� by approximating 1�p[b]� in (15) by a 0{1 step functionwith the step at b = ~b: M� � X0�b<~b(1) +Xb�~b(0) � ~b: (18)The same techniques can be applied for general �. The asymptotic behavior of M� for theBernoulli and Poisson models is the same.Theorem 6 [Kolchin et al 1978]. In the Bernoulli model with n elements inserted inm buckets (� = n=m) or in the Poisson model in which the occupancy of each bucket is an

www.manaraa.com

Section 5.1. Bucket Algorithms and Hashing by Chaining / 71independent Poisson RV with mean �, the expected maximum bucket occupancy isM� � 8>>><>>>: logmlog logm; if � = �(1);~b; if � = o(logm);�; if � = !(logm),where ~b is given by (16a).When � gets large, � = !(logm), the bucket occupancies become fairly uniform; thedi�erence M� � � converges in probability to � p2� logm, provided that � = mO(1).Extendible Hashing. A quantity related to maximum bucket occupancy is the expecteddirectory size used in extendible hashing, in which the hash table is allowed to grow andshrink dynamically [Fagin et al 1979], [Larson 1978]. Each slot in the hash table modelsa page of secondary storage capable of storing up to b elements. If a bucket overows,the number of buckets in the table is successively doubled until each bucket has at mostb elements. The directory acts as a b-trie, based upon the in�nite precision hash addressesof the elements (cf. Section 4.3). For this reason, the analyses of directory size and trieheight are very closely related.At any given time, the directory size is equal to the number of buckets in the table,which is always a power of 2. The probability �[h]n that the directory size is � 2h is�[h]n = n! [zn]�eb � z2h��2h : (19a)This is identical to (14d) with m = 2h, except that in this case m is the parameter thatvaries, and the bucket capacity b stays �xed. We can also derive (19a) via the admissibilitytheorem for tries (Theorem 4.18): �[h]n is the probability that the height of a random b-trieis � h. The EGF �[h](z) =Pn�0 �[h]n zn=n! satis�es�[h](z) = ��[h�1] �z2��2 ; �[0](z) = eb(z): (19b)Hence, (19a) follows.Theorem 7 [Flajolet 1983]. In the Bernoulli model, the expected directory size in ex-tendible hashing for bucket size b > 1 when there are n elements present isSn � � �1� 1b �(log 2)(b+ 1)!1=b +Q��1 + 1b� log2 n�!n1+1=b;where Q(u) is a periodic function with period 1 and mean value 0.Proof Sketch. We can express the average directory size Sn in terms of �[h]n in a waysimilar to (15): Sn =Xh�1 2h(�[h]n � �[h�1]n) =Xh�0 2h(1� �[h]n): (20)

www.manaraa.com

72 / Average-Case Analysis of Algorithms and Data StructuresThe �rst step in the derivation is to apply the saddle point method of Section 2.3. Weomit the details for brevity. As for the maximum bucket occupancy, the probabilities �[h]nchange quickly from � 0 to � 1 in a \central region," which in this case is where h = ~h =(1 + 1=b) log2 n. By saddle point, we get the uniform approximation�[h]n � exp� �nb+1(b+ 1)! 2bh� ; (21)for jh � ~hj < log2 logn. When h � ~h + log2 logn, approximation (21) is no longer valid,but the terms 1��[h]n continue to decrease exponentially with respect to h. Hence, we cansubstitute approximation (21) into (20) without a�ecting the leading terms of Sn. We getSn � T �nb+1=(b+ 1)!�, where T (x) is the harmonic sumT (x) =Xh�0 2h �1� e�x=2bh� ; (22a)whose Mellin transform is T �(s) = ��(s)1� 2bs+1 ; (22b)in the fundamental strip h�1;�1=bi. The asymptotic expansion of T (x), as x ! 1, isgiven by the poles of T �(s) to the right of the strip. There is a simple pole at s = 0 dueto �(s) and simple poles at s = �1=b + 2k�i= log 2 due to the denominator. The resultfollows immediately from (2.24).Theorem 7 shows that the leading term of Sn oscillates with (1 + 1=b) log2 n. Anintuition as to why there is oscillation can be found in the last summation in (20). Thesum samples the terms 1��[h]n at each nonnegative integer h using the exponential weightfunction 2h. The value of h where the approximation (21) changes quickly from � 0 to � 1is close to an integer value only when (1+ 1=b) log2 n is close to an integer, thus providingthe periodic e�ect.It is also interesting to note from Theorem 7 that the directory size is asymptoti-cally superlinear, that is, the directory becomes larger than the �le itself when n is large!Fortunately, convergence is slow, and the nonlinear growth of Sn is not noticeable in prac-tice when b is large enough, say b � 40. Similar results for the Poisson model appear in[R�egnier 1981].The same techniques apply to the analysis of the expected height Hn of tries:Hn =Xh�1h(�[h]n � �[h�1]n) =Xh�0(1� �[h]n): (23)This is the same as (20), but without the weight factor 2h. (When trie height grows by 1,directory size doubles.)Theorem 8 [Flajolet 1983]. The expected height in the Bernoulli model of a randomb-trie of n elements isHn = �1 + 1b� log2 n+ 12 + � log�(b+ 1)!�b log 2 + P ��1 + 1b� log2 n�+ o(1);

www.manaraa.com

Section 5.1. Bucket Algorithms and Hashing by Chaining / 73where P (u) is periodic with period 1, small amplitude, and mean value 0.In the biased case, where 0 occurs with probability p and 1 occurs with probability q =1� p, we have �[h](z) = �[h�1](pz) � �[h�1](qz);which gives us �[h](z) = Y1�k�h �eb(pkqn�kz)�(hk)(cf. (19a) and (19b)). Multidimensional versions of extendible hashing have been studiedin [R�egnier 1985].Coalesced Hashing. We can bypass the problems of direct chaining with relocation byusing hashing with coalescing chains (or simply coalesced hashing). Part of the hash table isdedicated to storing elements that collide when inserted. We rede�ne m0 to be the numberof slots in the hash table. The range of the hash function is restricted to f1; 2; : : : ;mg. Wecall the �rst m slots the address region; the bottom m0 �m slots, which are used to storecolliders, comprise the cellar.When a collision occurs during insertion (because the element's hash address is alreadyoccupied), the element is inserted instead into the largest-numbered empty slot in the hashtable and is linked to the end of the chain it collided with. This means that the collidingrecord is stored in the cellar if the cellar is not full. But if there are no empty slots inthe cellar, the element ends up in the address region. In the latter case, elements insertedlater could collide with this element, and thus their chains would \coalesce."If the cellar size is chosen so that it can accommodate all the colliders, then coa-lesced hashing reduces to separate chaining. It is somewhat surprising that average-caseperformance can be improved by choosing a smaller cellar size so that coalescing usuallyoccurs. The intuition is that by making the address region larger, the hash addresses ofthe elements are spread out over a larger area, which helps reduce collisions. This o�setsthe disadvantages of coalescing, which typically occurs much later. We might be temptedto go the the extreme and eliminate the cellar completely (this variant is called standardcoalesced hashing), but performance deteriorates. The theorem below gives the expectedsearch times as a function of the load factor � = n=m0 and the address factor � = m=m0.We can use the theorem to determine the optimum �. It turns out that �opt is a functionof � and of the type of search, but the compromise value � = 0:86 gives near optimumsearch performance for a large range of � and is recommended for general use.Theorem 9 [Vitter 1983]. The expected number of probes per search for coalesced hashingin an m0-slot table with address size m = �m0 and with n = �m0 elements isUn � 8>><>>: e��=� + �� ; if � � ��;1� + 14�e2(�=���) � 1��3� 2� + 2��� 12��� � ��; if � � ��;

www.manaraa.com

74 / Average-Case Analysis of Algorithms and Data Structures
Cn � 8>>>>>><>>>>>>:

1 + �2� ; if � � ��;1 + �8��e2(�=���) � 1� 2��� � ����3� 2� + 2��+ 14��� + ��+ �4�1� ��� �; if � � ��,where � is the unique nonnegative solution to the equation e�� + � = 1=�.The method described above is formally known as late-insertion coalesced hashing(LICH). Vitter and Chen [1987] also analyze two other methods called early-insertion coa-lesced hashing (EICH) and varied-insertion coalesced hashing (VICH). In EICH, a collidingelement is inserted immediately after its hash address in the chain, by rerouting pointers.VICH uses the same rule, except when there is a cellar slot in the chain following theelement's hash address; in that case, the element is linked into the chain immediately afterthe last cellar slot in the chain. VICH requires slightly fewer probes per search than theother variants and appears to be optimum among all possible linking methods. Deletionalgorithms and implementation issues are also covered in [Vitter and Chen 1987].Proof Sketch. We �rst consider the unsuccessful search case. We count the numbermn+1Un of probes needed to perform all possible unsuccessful searches in all possible hashtables of n elements. Each chain of length ` that has t elements in the cellar (which wecall an (`; t)-chain) contributes�`=0 + `+ (`� t� 1) + (`� t� 2) + � � �+ 1 = �`=0 + `+ �`� t2 � (24a)probes, and we havemn+1Un = mn+1pn + X̀;t ` cn(`; t) + X̀;t �`� t2 �cn(`; t); (24b)where pn is the probability that the hash address of the element is unoccupied, and cn(`; t)is the number of (`; t)-chains. The second term is easily seen to be nmn, since there aren elements in each hash table. The evaluations of the �rst term mn+1pn and the thirdterm Sn = X̀;t �`� t2 �cn(`; t) (24c)are similar; for brevity we restrict our attention to the latter. There does not seem to bea closed form expression for cn(`; t), but we can develop a recurrence for cn(`; t) which wecan substitute into (24c) to getSn = (m+ 2)n�1 X0�j�n�1� mm+ 2�j (j �m0 +m) Fjmj ; (25)where Fj is the number of hash sequences of j elements that yield full cellars. In terms ofprobabilities, Fj=mj is the probability that the cellar is full after j insertions.

www.manaraa.com

Section 5.1. Bucket Algorithms and Hashing by Chaining / 75This provides a link to the occupancy distributions studied earlier. We de�ne theRV Nj to be the number of elements that collide when inserted, in a hash table of j ele-ments. The cellar is full after k insertions if and only ifNj � m0�m; by taking probabilities,we get Fjmj = PrfNj � m0 �mg: (26)This expresses Fj=mj as a tail of the probability distribution for Nj . We can determinethe distribution by applying Theorem 1. We let Hk;j;m be the number of hash sequencesof n elements for which k elements are marked. Our marking rule is that all elements thatcollide when inserted are marked; that is, for each bucket (hash address) i with s elements,there are fi(s) = s� 1 + �s=0 marked elements. By Theorem 1, we havebH(u; z) = Xk;j�0Hk;j;muk zjj! = Y1�i�m bBi(u; z); (27a)where bBi(u; z) =Xt�0 ut�1+�t=0 ztt! = euz � 1 + uu ; (27b)for each 1 � i � m. Substituting (27b) into (27a), we getbH(u; z) = �euz � 1 + uu �m : (27c)This allows us to solve for Fj=mj = PrfNj � m0 �mg:PrfNj = kg = Hk;j;mmj = j! �ukzj� bH �u; zm� ; (28a)Fj=mj = 1� j! hum0�m�1zji 11� u bH �u; zm� : (28b)We can get asymptotic estimates for (28b) by use of the saddle point method as in ouranalysis of extendible hashing or by Cherno� bounds as in [Vitter 1983] and [Vitter andChen 1987]; the details are omitted for brevity. The distribution Fj=mj increases sharplyfrom � 0 to � 1 in the \central region" whereNj � m0 �m: (29a)The expected number of collisions Nj isNj = j! �zj� @@u bH �u; zm� ����u=1 = j �m+m�1� 1m�j : (29b)We can solve for the value of j = ~| that satis�es (29a) by combining (29a) and (29b) andusing the ratios ~� = ~|=m0 and � = m=m0. We havee�~� + ~� � 1� : (29c)

www.manaraa.com

76 / Average-Case Analysis of Algorithms and Data StructuresIn a way similar to (18), we approximate Fj=mj by a 0{1 step function with the step atj = ~|, and we get Sn � (m+ 2)n�1 X~|�j�n�1� mm+ 2�j (j �m0 +m); (30)which can be summed easily. The error of approximation can be shown to be negligible,as in the analysis of maximum bucket occupancy and extendible hashing. The analysis ofthe term mn+1pn in (24b) is based upon similar ideas and is omitted for brevity.For the case of successful searches, the formula for Cn follows from a formula similarto Eq. (4.25) for binary search trees and separate chaining:Cn = 1 + 1n X0�i�n�1(Ui � pi); (31)where pi is the term in (24b).A uni�ed analysis of all three variants of coalesced hashing|LICH, EICH, andVICH|is given in [Vitter and Chen, 1987]. The maximum number of probes per searchamong all the searches in the same table, for the special case of standard LICH (when thereis no cellar and m = m0), is shown in [Pittel 1987b] to be logc n� 2 logc logn+O(1) withprobability � 1 for successful searches and logc n� logc logn+ O(1) with probability � 1for unsuccessful searches, where c = 1=(1� e��).
5.2. Hashing by Open AddressingAn alternative to chaining is to probe an implicitly de�ned sequence of locations whilelooking for an element. If the element is found, the search is successful; if an \open"(empty) slot is encountered, the search is unsuccessful, and the new element is insertedinto the empty slot that terminated the search.Uniform Probing. A simple scheme to analyze, which serves as a good approximationto more practical methods, is uniform probing. The probing sequence for each element x isa random permutation h1(x)h2(x) : : : hm(x) of f1; 2; : : : ;mg. For an unsuccessful search,the probability that k probes are needed when there are n elements in the table ispk = nk�1(m� n)mk = � m� km� n� 1���mn�: (32a)Hence, we have Un =Xk�0 kpk = 1�mn� Xk�0 k� m� km� n� 1�: (32b)

www.manaraa.com

Section 5.2. Hashing by Open Addressing / 77We split k into two parts k = (m+1)�(m�k+1), because we can handle each separately;the m� k + 1 term gets \absorbed" into the binomial coe�cient.Un = 1�mn� Xk�0(m+ 1)� m� km� n� 1�� 1�mn� Xk�0(m� k + 1)� m� km� n� 1�= m+ 1� m� n�mn� Xk�0�m� k + 1m� n �= m+ 1� m� n�mn� � m+ 1m� n+ 1�= m+ 1m� n+ 1 : (32c)Successful search time for open addressing algorithms satisfy a relation similar to (4.25):Cn = 1n X0�i�n�1Ui: (33)Putting this all together, we get the following theorem:Theorem 10. The expected number of probes per unsuccessful and successful search foruniform probing, when there are n = m� elements in a hash table of m slots, isUn = m+ 1m� n+ 1 � 11� � ; Cn = m+ 1n (Hm+1 �Hm�n+1) � 1� log 11� �:The asymptotic formula Un � 1=(1��) = 1+�+�2+ : : : has the following intuitiveinterpretation: With probability � we need more than one probe, with probability �2 weneed more than two probes, and so on. The expected maximum search time per hash tableis studied in [Gonnet 1981].Double Hashing and Secondary Clustering. The practical limitation on uniformprobing is that computing several hash functions is very expensive. However, the perfor-mance of uniform probing can be approximated well by use of just two hash functions. Inthe double hashing method, the ith probe is made at sloth1(x) + ih2(x) mod m; for 0 � i � m� 1; (34)that is, the probe sequence starts at slot h1(x) and steps cyclically through the tablewith step size h2(x). (For simplicity, we have renumbered the m table slots to be 0, 1,: : : , m � 1.) The value of the second hash function must be relatively prime to m sothat the probe sequence (34) gives a full permutation. Guibas and Szemer�edi [1978] showusing interesting probabilistic techniques that when � < 0:319 the number of probes persearch is asymptotically equal to that of uniform probing, and this has been extended toall �xed � < 1 [Lueker and Molodowitch 1988].It is often faster in practice to use only one hash function and to de�ne h2(x) implicitlyin terms of h1(x). For example, if m is prime, we could seth2(x) = � 1; if h1(x) = 0;m� h1(x); if h1(x) > 0. (35)A useful approximation to this variant is the secondary clustering model, in which theinitial probe location h1(x) uniquely determines the remaining probe locations h2h3 : : : hm,which form a random permutation of the other m� 1 slots.

www.manaraa.com

78 / Average-Case Analysis of Algorithms and Data StructuresTheorem 11 [Knuth 1973b]. The expected number of probes per unsuccessful and suc-cessful search for hashing with secondary clustering, when there are n = m� elements in ahash table of m slots, isUn � 11� � � �+ log 11� � ; Cn � 1 + log 11� � � �2 :The proof is a generalization of the method we use below to analyze linear probing.The number of probes per search for secondary clustering is slightly more than for doublehashing and uniform probing, but slightly less than for linear probing.Linear Probing. Perhaps the simplest implementation of open addressing is a furtherextension of (34) and (35), called linear probing, in which the unit step size h2(x) � 1 isused. This causes primary clustering in the table, because all the elements with the samehash address follow the same probing sequence.Theorem 12 [Knuth 1973b]. The expected number of probes per unsuccessful and suc-cessful search for linear probing, when there are n = m� elements in a hash table ofm slots,is Un = 12�1 +Q1(m;n)�; Cn = 12�1 +Q0(m;n� 1)�; (36)where Qr(m;n) =Xk�0�r + kk � nkmk :If � = n=m is a constant bounded away from 1, then we haveUn � 12 �1 + 1(1� �)2� ; Cn � 12 �1 + 11� �� :For full tables, we haveUm�1 = m+ 12 ; Cm � 12r�m2 + 13 + 124r �2m +O(1=m):Proof. The derivation of the exact formul� for Un and Cn is an exercise in combinatorialmanipulation. The number of the mn hash sequences such that slot 0 is empty isf(m;n) = �1� nm�mn: (37)By decomposing the the hash table into two separate parts, we �nd that the number ofhash sequences such that position 0 is empty, positions 1 through k are occupied, andposition k + 1 is empty isg(m;n; k) = �nk�f(k + 1; k)f(m� k � 1; n� k): (38)

www.manaraa.com

Section 5.2. Hashing by Open Addressing / 79The probability that k + 1 probes are needed for an unsuccessful search is thuspk = 1mn Xk�j�n g(m;n; j): (39)The formul� (36) for Un = P0�k�n(k + 1)pk and Cn = 1nP0�i�n�1 Ui in termsof Q0(m;n� 1) and Q1(m;n) follow by applications of Abel's identity (cf. Section 1.4).When � is bounded below 1, then we can evaluate Qr(m;n) asymptotically by ap-proximating nk=mk in the summations by nk=mk = �k. The interesting case as far asanalysis is concerned is for the full table when � � 1. It is convenient to de�ne the newnotation Qfbkg =Xk�0 bk (m� 1)kmk : (40a)The link between our new and old notation isQf(r+kk)g(m) = Qr(m;m� 1): (40b)Note that the Q functions each have only a �nite number of nonzero terms. The followingpowerful theorem provides asymptotic expansions for several choices of fbkg:Theorem 13 [Knuth and Sch�onhage 1978]. We haveQfbkg(m) = m!mm�1 [zm]A�y(z)�; (41a)where y(z) is de�ned implicitly by the equationy(z) = zey(z); (41b)and A(u) =Pk�0 bkuk+1=(k + 1) is the antiderivative of B(u) =Pk�0 bkuk.Proof of Theorem 13. The proof uses an application of Lagrange-B�urmann inversion(Theorem 1.6) applied to y(z). The motivation is based upon the fact that sums of theform (40a) are associated with the implicitly de�ned function y(z) in a natural way; thenumber of labeled oriented trees on m vertices is mm�1, and its EGF is y(z). Also, y(z)was used in Section 1.4 to derive Abel's identity, and Abel's identity was used above toderive (36). By applying Lagrange-B�urmann inversion to the right-hand side of (41a), with'(u) = eu, g(u) = A(u), and f(z) = y(z), we getm!mm�1 [zm]A�y(z)� = m!mm�1 1m [um�1]eumA0(u)= (m� 1)!mm�1 [um�1]eumB(u)= (m� 1)!mm�1 X0�k�m�1 bk mm�k�1(m� k � 1)!= X0�k�m�1 bk (m� 1)kmk= Qfbkg(m):

www.manaraa.com

80 / Average-Case Analysis of Algorithms and Data StructuresBy (40b) the sequences fbkg corresponding to Q0(m;m � 1) and Q1(m;m � 1) havegenerating functions B0(u) = 1=(1 � u) and B1(u) = 1=(1 � u)2, and the correspondingantiderivatives are A0(u) = log�1=(1�u)� and A1(u) = 1=(1�u). By applying Theorem 13,we get Q0(m;m� 1) = m!mm�1 [zm] log 11� y(z) ; (42a)Q1(m;m� 1) = m!mm�1 [zm] 11� y(z) : (42b)It follows from the method used in Theorem 4.4 to count the number Tn of plane treeswith degree constraint
 that the dominant singularity of y(z) implicitly de�ned by (41b)is z = 1=e, where we have the expansion y(z) = 1�p2p1� ez+O(1�ez). Hence, z = 1=eis also the dominant singularity of log�1=(1� y(z))�, and we get directlylog 11� y(z) = 12 log 11� ez � 12 log 2 + O(p1� ez): (43)The approximation for Cm follows by extracting coe�cients from (43). The formulaUm�1 = (m + 1)=2 can be obtained by an analysis of the right-hand side of (42), ormore directly by counting the number of probes needed for the m unsuccessful searches ina hash table with only one empty slot. This completes the proof of Theorem 12.The length of the maximum search per table for �xed � < 1 is shown in [Pittel 1987a]to be �(logn), on the average. Amble and Knuth [1974] consider a variation of linearprobing, called ordered hashing, in which each cluster of elements in the table is kept inthe order that would occur if the elements were inserted in increasing order by elementvalue. Elements are relocated within a cluster, if necessary, during an insertion. Theaverage number of probes per unsuccessful search decreases to Cn�1.Linear probing can also be used for sorting, in a way similar to distribution sortdescribed earlier, except that the elements are stored in a linear probing hash table ratherthan in buckets. The n elements in the range [a; b) are inserted into the table using thehash function h1(x) = b(x� a)=(x� b)c. The elements are then compacted and sorted viainsertion sort. The hash table size m should be chosen to be somewhat larger than n (say,n=m � 0:8), so that insertion times for linear probing are fast. A related sorting methoddescribed in [Gonnet and Munro 1981] uses ordered hashing to keep the elements in sortedorder, and thus the �nal insertion sort is not needed.

www.manaraa.com

Section 6.1. Integrated Cost and the History Model / 816. Dynamic AlgorithmsIn this section we study performance measures that reect the dynamic performance ofa data structure over an interval of time, during which several operations may occur. InSection 6.1, we consider priority queue algorithms and analyze their performance integratedover a sequence of operations. The techniques apply to other data structures as well,including dictionaries, lists, stacks, and symbol tables. In Section 6.2 we analyze themaximum size attained by a data structure over time, which has important applicationsto preallocating resources. We conclude in Section 6.3 with the probabilistic analysis ofunion-�nd algorithms.6.1. Integrated Cost and the History ModelDynamic data structures such as lists, search trees, and heap-ordered trees can be analyzedin a dynamic context under the e�ect of sequences of operations. Knuth [1977] considersvarious models of what it means for deletions to \preserve randomness," and this has beenapplied to the study of various data structures (for example, see [Vitter and Chen, 1987]).Fran�con [1978] proposed a model called the \history model" which amounts to analyzingdynamic structures under all possible evolutions up to order-isomorphism. Using combi-natorial interpretations of continued fractions and orthogonal polynomials [Flajolet 1980],several data structures, including dictionaries, priority queues, lists, stacks, and symboltables, can be analyzed under this model [Flajolet, Fran�con, and Vuillemin 1980]. Inthis section, we shall present an overview of the theory, with special emphasis on priorityqueues.A priority queue (see Section 4.2) supports the operations of inserting an element xinto the queue (which we denote by I(x)) and deletion of the minimum element (which wedenote by D). An example of a particular sequence of operations iss = I(3:1) I(1:7) I(2:9) I(3:7)DD I(3:4): (1)Such a sequence s consists of a schema IIIIDDI, from which we see that s causes thequeue size to increase by 3. If we restrict attention to structures that operate by comparisonbetween elements, the e�ect of s on an initially empty queue is fully characterized by thefollowing information: The second operation I(1:7) inserts an element smaller than the�rst, the third operation I(2:9) inserts an element that falls in between the two previousones, and so on. We de�ne the history associated with a sequence s to consist of theschema of s in which each operation is labeled by the rank of the element on which itoperates (relative to the current state of the structure). If we make the convention thatranks are numbered starting at 0, then all delete minimum operations must be labeledby 0, and each insert is labeled between 0 and k, where k is the size of the priority queueat the time of the insert. The history associated with (1) isI0 I0 I1 I3D0D0 I1: (2)We let H denote the set of all histories containing as many inserts as delete minimumoperations, and we let Hn be the subset of those that have length n. We de�ne hn = jHnjand h(z) =Pn�0 hnzn.

www.manaraa.com

82 / Average-Case Analysis of Algorithms and Data StructuresTheorem 1. The OGF of priority queue histories has the continued fraction expansionh(z) = 11� 1 � z21� 2 � z21� 3 � z21� 4 � z2� � �
: (3)

Theorem 1 is a special case of a general theorem of [Flajolet 1980] that expressesgenerating functions of labeled schemas in terms of continued fractions. Another specialcase is the enumeration of plane trees, given in Section 4.1.Returning to priority queue histories, from a classical theorem of Gauss (concern-ing the continued fraction expansion of quotients of hypergeometric functions) applied tocontinued fraction (3), we �ndh2n = 1� 3� 5� � � � � (2n� 1);with h2n+1 = 0. Thus the set of histories has an explicit and simple counting expression.Let us de�ne the height of a history to be the maximum size that the priority queue attainsover the course of the operations. From the same theory, it follows that the OGF h[k](z)for histories with height bounded by an integer k is the kth convergent of (3):h[k](z) = Pk(z)Qk(z) ; (4)where Pk and Qk are closely related to Hermite polynomials. From (3) and (4), it ispossible to determine generating functions for extended sets of histories (such as the setof histories Hhki that start at size 0 and end at size k) and then to �nd the numberof times a given operation is performed on a priority queue structure of size k in thecourse of all histories of Hn. The expressions involve the continued fraction h(z) in (3)and its convergents given in (4). From there, for a given priority queue structure, wecan compute the integrated cost Kn de�ned as the expected cost of a random historyin Hn: If CI k (respectively, CDk) is the individual expected cost of an insert (respectively,delete minimum) operation on the priority queue structure when it has size k, then wehave Kn = 1hn Xk �CI k �NI n;k + CDk �NDn;k� ; (5)where NI n;k (respectively, NDn;k) is the number of times operation insert (respectively,delete minimum) occurs at size k inside all histories inHn. Manipulations with EGFs makeit possible to express the �nal result in simple form. For instance, we have the followingtwo EGFs of histories H with a simple expression:Xn�0hn znn! = ez2=2 and Xn�0h2n znn! = 1p1� 2z :

www.manaraa.com

Section 6.2. Size of Dynamic Data Structures / 83The main theorem is that the following two GFsC(x) =Xk�0(CI k + CDk+1)xk and K(z) =Xn�0K2nh2n znn! ; (6)where C(x) is an OGF of individual costs and K(z) is a modi�ed EGF of integrated costs(after normalization by hn), are closely related:Theorem 2. The GFs C(x) and K(z) de�ned above satisfyK(z) = 1p1� 2z C � z1� z� : (7)If we plug into (7) the OGF C(x) corresponding to a particular implementation ofpriority queues, and then extract coe�cients, we get the integrated cost for that imple-mentation. For instance, for histories of length 2n for sorted lists (SL) and binary searchtrees (BST), we haveKSL2n = n(n+ 5)6 and KBST2n = n logn+ O(n): (8)A variety of other dynamic data structures, including dictionaries, lists, stacks, and symboltables, can be analyzed under the history model with these techniques. Each data typeis associated with a continued fraction of the form (3), a class of orthogonal polynomials(such as Laguerre, Meixner, Chebyshev, and Poisson-Charlier) related to (4), and �nally atransformation analogous to (6) that describes the transition from a GF of individual coststo the corresponding GF of integrated costs and that is usually expressed as an integraltransform.6.2. Size of Dynamic Data StructuresWe can model the e�ect of insertions and deletions upon the size of a dynamic datastructure by regarding the ith element as being a subinterval [si; ti] of the unit interval;the ith element is \born" at time si, \dies" at time ti, and is \living" when t 2 [si; ti]. Attime t, the data structure must store the elements that are \living" at time t.It is natural to think of the data structure as a statistical queue, as far as size isconcerned. Let us denote the number of living elements at time t by Size(t). If we thinkof the elements as horizontal intervals, then Size(t) is just the number of intervals \cut"by the vertical line at position t. In many applications, such as in VLSI artwork analysis,for example, the number of living elements at any given time tends to be the square rootof the total number of elements; thus for purposes of storage e�ciency the data structureshould expunge dead elements.In the hashing with lazy deletion (HwLD) data structure, we assume that each elementhas a unique key. The data structure supports dynamic searching of elements by keyvalue, which is useful in several applications. The elements are stored in a hash table of Hbuckets, based upon the hash addresses of their keys. Typically separate chaining is used.

www.manaraa.com

84 / Average-Case Analysis of Algorithms and Data StructuresThe distinguishing feature of HwLD is that an element is not deleted as soon as it dies;the \lazy deletion" strategy deletes a dead element only when a later insertion accesses thesame bucket. The number H of buckets is chosen so that the expected number of elementsper bucket is small. HwLD is thus more time-e�cient than doing \vigilant-deletion," at acost of storing some dead elements.Expected Queue Sizes. We de�ne Use(t) to be the number of elements in the HwLDdata structure at time t; that is, Use(t) = Size(t) + Waste(t), where Waste(t) is thenumber of dead elements stored in the data structure at time t. Let us consider theM/M/1 queueing model, in which the births form a Poisson process, and the lifespans ofthe intervals are independently and exponentially distributed.Theorem 3 [Feller 1968], [Van Wyk and Vitter 1986]. In the stationary M/M/1 model,both Size and Use �H are identically Poisson distributed with mean �=�, where � is thebirth rate of the intervals and 1=� is the average lifetime per element.Proof. We de�ne the notation pm;n(t) = PrfSize(t) = m;Waste(t) = ng for m;n � 0,and pm;n(t) = 0 otherwise. In the M/M/1 model, we havepm;n(t+�t) = �(1� ��t)(e���t)m + o(�t)� pm;n(t)+ �(1� ��t)(m+ 1)(1� e���t)(e���t)m + o(�t)� pm+1;n�1(t)+ �n=0���t+ o(�t)�Xj�0 pm�1;j(t) + o(�t): (9a)By expanding the exponential terms in (9a) and rearranging, and letting �t! 0, we getp0m;n(t) = (���m�) pm;n(t) + (m+ 1)�pm+1;n�1(t) + �n=0�Xj�0 pm�1;j(t): (9b)In the stationary model, the probabilities pm;n(t) are independent of t, and thus the left-hand side of (9b) is 0. For notational simplicity we shall drop the dependence upon t.The rest of the derivation proceeds by considering the multidimensional OGF P (z; w) =Pm;n pm;nzmwn. Equation (9b) becomes�(z � w)@P (z; w)@z = ��P (z; w) + �zP (z; 1): (9c)This provides us with the distribution of Size:PrfSize = mg = [zm]P (z; 1) = [zm]e(z�1)�=� = (�=�)mm! e�=�: (10)To �nd the distribution of Use, we replace w by z in (9c), which causes the left-hand-sideof (9c) to become 0. We getPrfUse = kg = [zk]P (z; z) = [zk]zP (z; 1): (11)The rest follows from (10).

www.manaraa.com

Section 6.2. Size of Dynamic Data Structures / 85Maximum Queue Size. A more interesting statistic, which has direct application tomatters of storage preallocation, is the maximum values of Size(t) and Use(t) as thetime t varies over the entire unit interval.Orthogonal polynomials arise in an interesting way when considering the more gen-eral model of a stationary birth-and-death process, which is a Markov process in whichtransitions from level k are allowed only to levels k + 1 and k � 1. The in�nitesimal birthand death rates at level k are denoted by �k and �k:PrfSize(t+�t) = j j Size(t) = kg = 8><>:�k�t+ o(�t); if j = k + 1;�k�t+ o(�t); if j = k � 1;o(�t); otherwise.For the special case of the M/M/1 model, we have �0 = �1 = � � � = � and �k = k�; forthe M/M/1 model, we have �0 = �1 = � � � = � and �0 = �1 = � � � = �.Theorem 4 [Mathieu and Vitter 1988]. The distribution of max0�t�1fSize(t)g can beexpressed simply in terms of Chebyshev polynomials (for the M/M/1 process) and Poisson-Charlier polynomials (for the M/M/1 process). For several types of linear birth-and-deathprocesses, of the form �k = �k + �, �k = k + �, Qj(x) can be expressed in terms ofeither Laguerre polynomials or Meixner polynomials of the second kind.It is interesting to note that orthogonal polynomials arose in a similar way in Sec-tion 6.1. The formul� referred to in Theorem 4 can be used to calculate the distributionsof max0�t�1fSize(t)g numerically, but they do not seem to yield asymptotics directly.Instead we rely upon a di�erent approach:Theorem 5 [Kenyon-Mathieu and Vitter 1989]. In the stationary M/M/1 probabilisticmodel, assuming either that �! 0 or that � =
(1) and �!1, we have
E� maxt2[0;1]fSize(t)g	 � 8>>>>>><>>>>>>:

�� if f(�; �)! 0;d�� if f(�; �)! c;f(�)ln f(�) �� if f(�; �)!1, (12)
where f(�; �) = (ln�)=�� and the constant d is de�ned implicitly from the constant c byd ln d� d = c� 1. In the �rst case ln� = o(�=�), we also haveE� maxt2[0;1]fUse(t)g	 � �� +H: (13)When ln� = o(�=�), Theorem 5 says that the expected maximum value of Size(t)(respectively, Use(t)) is asymptotically equal to the maximum of its expected value. Forexample, in VLSI artwork applications, we might have � = n, � = pn, so that theaverage number of living elements at any given time is �=� = pn; by Theorem 5, theexpected maximum data structure size is asymptotically the same. Kenyon-Mathieu and

www.manaraa.com

86 / Average-Case Analysis of Algorithms and Data StructuresVitter [1989] also study the expected maximum under history models as in Section 6.1 andunder other probabilistic models.It is no accident that the theorem is structurally similar to Theorem 5.6 for maximumbucket occupancy. The quantity maxt2[0;1]fSize(t)g can be regarded as the continuouscounterpart of the maximum bucket occupancy. The proof below makes use of that relation.Proof Sketch. For brevity, we consider only the analysis of E�maxt2[0;1]fSize(t)g	.We shall concentrate primarily on case 1, in which ln� = o(�=�). The lower bound followsimmediately by Theorem 3:E� maxt2[0;1]fSize(t)g	 � EfSize(0)g = ��:We get the desired upper bound by looking at a the following discretized version ofthe problem: Let us consider a hash table with m = g� slots, where g� is an integer andg !1 very slowly, as �!1. The jth slot, for 1 � j � g�, represents the time interval�(j � 1)=(g�); j=(g�)�. For each element we place an entry into each slot whose associatedtime interval intersects the element's lifetime. If we de�ne N(j) to be the number ofelements in slot j, we get the following upper bound:max0�t�1fSize(t)g � max1�j�g�fN(j)g:The slot occupancies N(j) are Poisson distributed with mean �� (1+ 1g). However they arenot independent, so our analysis of maximum bucket occupancy in Theorem 5.6 does notapply to this case. The main point of the proof is showing that the lack of independencedoes not signi�cantly alter the expected maximum:E� max1�j�g�fN(j)g	 � ��:This gives us the desired upper bound, which completes the proof for case 1. The formulafor E�maxt2[0;1]fUse(t)g	 can be derived in the same way.This approach when applied to cases 2 and 3 of Theorem 5 gives upper boundson E�maxt2[0;1]fSize(t)g	 that are o� by a factor of 2. To get asymptotic bounds,di�erent techniques are used, involving probabilistic arguments that the distribution ofmaxt2[0;1]fSize(t)g is peaked in some \central region" about the mean. The techniqueis similar in spirit to those used in Section 5.1 for the analyses of extendible hashing,maximum bucket occupancy, and coalesced hashing.The probabilistic analysis of maximum size has also been successfully carried out for avariety of combinatorial data structures, such as dictionaries, linear lists, priority queues,and symbol tables, using the history model discussed in Section 6.1.

www.manaraa.com

Section 6.3. Set Union-Find Algorithms / 876.3. Set Union-Find AlgorithmsThe set union-�nd data type is useful in several computer applications, such as com-puting minimum spanning trees, testing equivalence of �nite state machines, performinguni�cation in logic programming and theorem proving, and handling COMMON blocksin FORTRAN compilers. The operation union(x; y) merges the equivalence classes (orsimply components) containing x and y and chooses a unique \representative" element forthe combined component. Operation �nd(x) returns the representative of x's component,and make set(x) creates a singleton component fxg with representative x.Union-�nd algorithms have been studied extensively in terms of worst-case and amor-tized performance. Tarjan and van Leeuwen [1984] give matching upper and lower amor-tized bounds of ��n+m�(m+ n; n)� for the problem, where n is the number of makesetoperations, m is the number of �nds, and �(a; b) denotes a functional inverse of Ack-ermann's function. The lower bound holds in a separable pointer machine model, andthe upper bound is achieved by the well-known tree data structure that does weightedmerges and path compression. A more extensive discussion appears in [Mehlhorn andTsakalidis 1989].In this section we study the average-case running time of more simple-minded algo-rithms, called \quick �nd" (QF) and \quick �nd weighted" (QFW). The data structureconsists of an array called rep, with one slot per element; rep[x] is the representative forelement x. Each �nd can thus be done in constant time. In addition, the elements in eachcomponent are linked together in a list. In the QF algorithm, union(x; y) is implementedby setting rep[z] := rep[x], for all z in y's component. The QFW algorithm is the same,except that when x's component is smaller than y's, we take the quicker route and setrep[z] := rep[y], for all z in x's component. An auxiliary array is used to keep track of thesize of each component.Since all �nds take constant time, we shall con�ne our attention to the union oper-ations. We consider n � 1 unions performed on a set of n elements, so that we end upwith a single component of size n. Our performance measure, which we denote by TQFnand TQFWn , is the total number of updates to slots of rep made during the unions. Weconsider three models of \random" input.Random Graph Model. Probably the most realistic model was proposed in [Yao 1976],based upon the random graph model of [Erd�os and R�enyi 1960]. Each of the �n2� undirectededges between n vertices \�res" independently, governed by a Poisson process. Each orderof �rings is thus equally likely. When an edge fx; yg �res, we execute union(x; y) if x and yare in di�erent components.Theorem 6 [Knuth and Sch�onhage 1978], [Bollob�as and Simon 1985]. The averagenumber of updates done by QF and QFW in the random graph model isTQFn = n28 + o�n(logn)2�;TQFWn = cn+ o(n= logn); where c = 2:0847 : : : :We shall restrict ourselves to showing that TQFn � n2=8 and TQFWn = O(n) using thederivation from [Knuth and Sch�onhage 1978]. The techniques in [Bollob�as and Simon 1985]

www.manaraa.com

88 / Average-Case Analysis of Algorithms and Data Structuresare needed to determine the coe�cient c and to get better bounds on the second-orderterms. In addition, [Bollob�as and Simon 1985] consider sequences of fewer than n unions.They show that, on the average, QF performs (12 � �)n unions in O(n logn) time, andQFW does k unions in O(k) time, for any k � n.Proof Sketch. The proof is based upon the intuition from [Erd�os and Renyi, 1959] thatwith probability 1� O(1= logn) a random graph on n vertices with 12n logn+ 12cn edges,where c is a constant, consists of one giant connected component of size � n � log lognand a set of isolated vertices. The graph is connected with probability e�e�c . In termsof union operations, it is very likely that the last few unions joined the giant componentto singleton components; the cost for each such union would be O(n) for QF and O(1)for QFW. The proof of Theorem 6 consists in showing that this behavior extends over theentire sequence of unions.For QFW, we �nd by recurrences and asymptotic approximations thatEn;k;m = O� nk3=2m3=2(k +m)3=2� ; for k;m < n2=3 and k;m > n2=3; (14)where En;k;m is the expected number of times a component of size k is merged with oneof size m. Hence,TQFWn = X1�k;m<nminfk;mgEn;k;m � X1�k�m<n k(En;k;m + En;m;k): (15)For the portion of the sum to which (14) applies, we can bound (15) by O(n). For the restof the range, in which 1 � k � n2=3 � m < n, the sum is bounded by n, since each elementcan be merged at most once from a component of size < n2=3 into one of size � n2=3. Theanalysis of QF is similar.Several combinatorial algorithms have been designed and analyzed using the randomgraph model. For example, Babai, Erd�os, and Selkow [1980] give an algorithm for testinggraph isomorphism that runs in O(n2) average time, though all known algorithms requireexponential time in the worst case.Random Spanning Tree Model. Each sequence of union operations corresponds to a\union tree," in which the directed edge hx; yi means that the component with represen-tative y is merged into the component with representative x. In the random spanning treemodel, all possible union trees are equally likely; there are nn�2 possible unoriented treesand (n� 1)! �ring orders of the edges in each tree.Theorem 7 [Yao 1976], [Knuth and Sch�onhage 1978]. The average number of updatesdone by QF and QFW in the random spanning tree model isTQFn =r�8 n3=2 + O(n logn);TQFWn = 1�n logn+O(n):

www.manaraa.com

Acknowledgment / 89Proof Sketch. An admissibility argument similar to those in Section 4 allows us tocompute the probability pn;k that the last union does a merge of components of sizes kand n� k: pn;k = 12(n� 1)�nk��kn�k�1�n� kn �n�k�1 : (16)And it is easy to show that Tn = cn + 2 X0<k<n pn;kTk; (17)where cn =P0<k<n kpn;k for QF and cn =P0<k<nminfk; n� kgpn;k for QFW. By sym-metry we have P0<k<n kpn;k = n=2, and arguments similar to those used for Theorem 6show that P0<k<nminfk; n� kgpn;k = (2n=�)1=2 + O(1). Recurrence (17) is in a speciallinear form that allows us to solve it \by repertoire": the solution of (17) for cn = an + bnis the sum of the solutions for cn = an and for cn = bn. Hence, if we can �nd a \basis" ofdi�erent cn for which (17) can be solved easily, then we can solve (17) for QF and QFWby linear combinations of the basis functions. It turns out that the basis in our case isthe set of Q-functions Qf1=krg(n), for r = �1, 0, 1, 2, : : : , which we studied in connectionwith linear probing in Section 5.2.Random Components Model. In the simplest model, and also the least realistic, weassume that at any given time each pair of existing components is equally likely to bemerged next. The union tree is this framework is nothing more than a random binarysearch tree, which we studied extensively in Section 4.2. Admissibility arguments leaddirectly to the following result:Theorem 8 [Doyle and Rivest 1976]. The average number of updates done by QF andQFW in the random components model isTQFn = n(Hn � 1) = n logn+ O(n);TQFWn = nHn � 12nHbn=2c � dn=2e = 12n logn+O(n):
AcknowledgmentWe thank Don Knuth for several helpful comments and suggestions.

www.manaraa.com

90 / Average-Case Analysis of Algorithms and Data StructuresReferencesA. Aggarwal and J. S. Vitter [1988]. The Input/Output Complexity of Sorting andRelated Problems," Communications of the ACM 31(9), September 1988, 1116{1127.O. Amble and D. E. Knuth [1974]. \Ordered Hash Tables," The Computer Journal17(2), May 1974, 135{142.M. Ajtai, J. Koml�os, and E. Szemer�edi [1983]. \An O(n logn) Sorting Network," Pro-ceedings of the 15th Annual Symposium on Theory of Computer Science, Boston, May 1983,1{9.L. Babai, P. Erd�os, and S. M. Selkow [1980]. \Random Graph Isomorphisms," SIAMJournal on Computing 9, 628{635.K. E. Batcher [1968]. \Sorting Networks and Their Applications," Proceedings of theAFIPS Spring Joint Computer Conference 32, 1968, 307-314.E. Bender [1973]. \Central and Local Limit Theorems Applied to Asymptotic Enumer-ation," Journal of Combinatorial Theory, Series A 15, 1973, 91-111.E. Bender [1974]. \Asymptotic Methods in Enumeration," SIAM Review 16, 1974, 485{515.C. Bender and S. Orszag [1978]. Advanced Mathematical Methods for Scientists andEngineers. McGraw-Hill, 1978.J. Berstel and L. Boasson [1989]. \Context-Free Languages," in this handbook.P. Billingsley [1986]. Probability and Measure, Academic Press, 1986.B. Bollob�as [1985]. Random Graphs, Academic Press, New York 1985.B. Bollob�as and I. Simon [1985]. \On the Expected Behavior of Disjoint Set UnionAlgorithms," Proceedings of the 17th Annual Symposium on Theory of Computing, Provi-dence, R. I., May 1985, 224{231.M. R. Brown [1979]. \A Partial Analysis of Random Height-Balanced Trees," SIAMJournal on Computing 8(1), February 1979, 33{41.W. H. Burge [1972]. \An Analysis of a Tree Sorting Method and Some Properties of aSet of Trees," Proceedings of the 1st USA{Japan Computer Conference, 1972, 372{378.E. R. Canfield [1977]. \Central and Local Limit Theorems for Coe�cients of BinomialType," Journal of Combinatorial Theory, Series A 23, 1977, 275-290.N. Chomsky and M. P. Sch�utzenberger [1963]. \The Algebraic Theory of Context-Free Languages," Computer Programming and Formal Languages, edited by P. Bra�ortand D. Hirschberg, North-Holland, 1963, 118{161.D. W. Clark [1979]. \Measurements of Dynamic List Structure Use in Lisp," IEEETransactions on Software Engineering SE{5(1), January 1979, 51{59.L. Comtet [1969]. \Calcul pratique des coe�cients de Taylor d'une fonction alg�ebrique,"L'Enseignement Math�ematique 10, 1969, 267-270.L. Comtet [1974]. Advanced Combinatorics. Reidel, Dordrecht, 1974.

www.manaraa.com

References / 91R. Cypher [1989]. \A Lower Bound on the Size of Shellsort Sorting Networks," Proceedingsof the 1st Annual ACM Symposium on Parallel Algorithms and Architectures, Santa Fe,NM, June 1989, 58{63.N. G. De Bruijn [1981]. Asymptotic Methods in Analysis. Dover, New York, 1981.N. G. De Bruijn, D. E. Knuth, and S. O. Rice [1972]. \The Average Height ofPlanted Plane Trees," in Graph Theory and Computing, edited by R.-C. Read, AcademicPress, New York, 1972, 15{22.L. Devroye [1986a]. \A Note on the Height of Binary Search Trees," Journal of the ACM33, 1986, 489{498.L. Devroye [1986b]. Lecture Notes on Bucket Algorithms, Birkh�auser, Boston, 1986.G. Doetsch [1955]. Handbuch der Laplace Transformation. Volumes 1{3. Birkh�auser Ver-lag, Basel, 1955.J. Doyle and R. L. Rivest [1976]. \Linear Expected Time of a Simple Union-FindAlgorithm," Information Processing Letters 5, 1976, 146{148.B. �Durian [1986]. \Quicksort without a Stack," Proceedings of the 12th Annual Sym-posium on Mathematical Foundations of Computer Science, Lecture Notes in ComputerScience 233, 1986, 283{289.P. Erd�os and A. R�enyi [1960]. \On the Evolution of Random Graphs," Publ. of theMath. Institute of the Hungarian Academy of Sciences 5, 1960, 17{61.R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong [1979]. \ExtendibleHashing|A Fast Access Method for Dynamic Files," ACM Transactions on DatabaseSystems 4(3), September 1979, 315{344.W. Feller [1968]. An Introduction to Probability Theory and Its Applications, Volume 1,Wiley, New York, third edition 1968.W. Feller [1971]. An Introduction to Probability Theory and Its Applications, Volume 2,Wiley, New York, second edition 1971.Ph. Flajolet [1980]. \Combinatorial Aspects of Continued Fractions," Discrete Mathe-matics 32, 1980, 125-161.Ph. Flajolet [1981]. Analyse d'algorithmes de manipulation d'arbres et de �chiers, inCahiers du BURO 34{35, 1981, 1{209.Ph. Flajolet [1983]. \On the Performance Evaluation of Extendible Hashing and TrieSearching," Acta Informatica 20, 1983, 345{369.Ph. Flajolet [1987]. \Analytic Models and Ambiguity of Context-Free Languages," The-oretical Computer Science 49, 1987.Ph. Flajolet [1988]. \Mathematical Methods in the Analysis of Algorithms and DataStructures," Trends in Theoretical Computer Science, edited by E. B�orger, Computer Sci-ence Press, 1988, 225{304.Ph. Flajolet, J. Fran�con, and J. Vuillemin [1980]. \Sequence of Operations Analysisfor Dynamic Data Structures," Journal of Algorithms 1(2), 1980, 111{141.Ph. Flajolet, G. Gonnet, C. Puech, and M. Robson [1989]. \Analytic Variationson Quad Trees," draft, 1989.

www.manaraa.com

92 / Average-Case Analysis of Algorithms and Data StructuresPh. Flajolet and A. M. Odlyzko [1982]. \The Average Height of Binary Trees andOther Simple Trees," J. Computer and System Sciences 25, 1982, 171-213.Ph. Flajolet and A. M. Odlyzko [1989]. \Singularity Analysis of Generating Func-tions," SIAM Journal on Discrete Mathematics 3(1), 1990.Ph. Flajolet and C. Puech [1986] \Partial Match Retrieval of Multidimensional Data,"Journal of the ACM 33(2), April 1986, 371{407. 1986.Ph. Flajolet, J.-C. Raoult, and J. Vuillemin [1979]. \The Number of RegistersRequired to Evaluate Arithmetic Expressions," Theoretical Computer Science 9, 1979,99{125.Ph. Flajolet, M. R�egnier and R. Sedgewick [1985]. \Some Uses of the MellinIntegral Transform in the Analysis of Algorithms," Combinatorics on Words, SpringerNATO ASI Series F, Volume 12, Berlin, 1985.Ph. Flajolet, M. R�egnier and D. Sotteau [1985]. \Algebraic Methods for TrieStatistics," Annals of Discrete Mathematics 25, 1985, 145{188.Ph. Flajolet and R. Sedgewick [1986]. \Digital Search Trees Revisited," SIAM Jour-nal on Computing 15(3), August 1986, 748{767.Ph. Flajolet, P. Sipala, and J.-M. Steyaert [1987]. \Analytic Variations onthe Common Subexpression Problem," Proceedings of the 17th Annual InternationalColloquium on Automata, Languages, and Programming (ICALP), Warwick, England,July 1990. Published in Lecture Notes in Computer Science, Springer-Verlag, Berlin.Ph. Flajolet and J.-M. Steyaert [1987]. \A Complexity Calculus for Recursive TreeAlgorithms," Mathematical Systems Theory 19, 1987, 301{331.D. Foata [1974]. La s�erie g�en�eratrice exponentielle dans les probl�emes d'�enum�eration,Series S. M. S., Montreal University Press, 1974.J. Fran�con [1978]. \Histoire de �chiers," RAIRO Inform. Theor. 12, 1978, 49{67.J. Fran�con, G. Viennot, and J. Vuillemin [1978]. \Description and Analysis of anE�cient Priority Queue Representation," Proceedings of the 19th Annual Symposium onFoundations of Computer Science, Ann Arbor, October 1978, 1{7.G. H. Gonnet [1981]. \Expected Length of the Longest Probe Sequence in Hash CodeSearching," Journal of the ACM 28(2), April 1981, 289{304.G. H. Gonnet [1984] Handbook of Algorithms and Data Structures. Addison-Wesley,Reading, 1984.G. H. Gonnet and J. I. Munro [1981]. \A Linear Probing Sort and its Analysis,"Proceedings of the 13th Annual Symposium on Theory of Computing, Milwaukee, WI,May 1981, 90{95.G. H. Gonnet, L. D. Rogers, and A. George [1980]. \An Algorithmic and ComplexityAnalysis of Interpolation Search," Acta Informatica 13(1), January 1980, 39{46.I. Goulden and D. Jackson [1983]. Combinatorial Enumerations. Wiley, New York,1983.D. H. Greene [1983]. \Labelled Formal Languages and Their Uses," Stanford University,Technical Report STAN-CS-83-982, 1983.

www.manaraa.com

References / 93D. H. Greene and D. E. Knuth [1982]. Mathematics for the Analysis of Algorithms.Birkh�auser, Boston, second edition 1982.L. J. Guibas and E. Szemer�edi [1978]. \The Analysis of Double Hashing," Journal ofComputer and System Sciences 16(2), April 1978, 226{274.B. Harris and L. Schoenfeld [1968]. \Asymptotic Expansions for the Coe�cients ofAnalytic Functions," Illinois J. Math. 12, 1968, 264-277.W. K. Hayman [1956]. \A Generalization of Stirling's Formula," J. Reine und AngewandteMathematik 196, 1956, 67-95.P. Henrici [1974]. Applied and Computational Complex Analysis. Volume 1. Wiley, NewYork, 1974.P. Henrici [1977]. Applied and Computational Complex Analysis. Volume 2. Wiley, NewYork, 1977.B.-C. Huang and D. E. Knuth [1986]. \A One-Way, Stackless Quicksort Algorithm,"BIT 26, 1986, 127{130.D. H. Hunt [1967]. Bachelor's thesis, Princeton University, April 1967.J. M. Incerpi and R. Sedgewick [1985]. \Improved Upper Bounds on Shellsort," Jour-nal of Computer and System Sciences 31, 1985, 210{224.Ph. Jacquet and M. R�egnier [1986]. \Trie Partitioning Process: Limiting Distribu-tions," in Proceedings of CAAP '86, Lecture Notes in Computer Science 214, 1986, 196{210.Ph. Jacquet and M. R�egnier [1987]. \Normal Limiting Distribution of the Size ofTries," in Performance '87, Proceedings of 13th International Symposium on ComputerPerformance, Brussels, December 1987.R. Kemp [1979]. \The Average Number of Registers Needed to Evaluate a Binary TreeOptimally," Acta Informatica 11(4), 1979, 363{372.R. Kemp [1984]. Fundamentals of the Average Case Analysis of Particular Algorithms.Teubner-Wiley, Stuttgart, 1984.C. M. Kenyon-Mathieu and J. S. Vitter [1989]. \General Methods for the Analysisof the Maximum Size of Data Structures," Proceedings of the 16th Annual InternationalColloquium on Automata, Languages, and Programming (ICALP), Stresa, Italy, July 1989.Published in Lecture Notes in Computer Science, Springer-Verlag, Berlin.P. Kirschenhofer and H. Prodinger [1986]. \Some Further Results on Digital SearchTrees," Proceedings of the 13th Annual International Colloquium on Automata, Languages,and Programming (ICALP), Rennes, France, July 1986. Published in Lecture Notes inComputer Science, Volume 226, Springer-Verlag, Berlin.P. Kirschenhofer and H. Prodinger [1988]. \On Some Applications of Formul� ofRamanujan in the Analysis of Algorithms," preprint, 1988.D. E. Knuth [1978]. \The Average Time for Carry Propagation," Indagationes Mathe-matic� 40, 1978, 238{242.D. E. Knuth [1973a]. The Art of Computer Programming. Volume 1: Fundamental Algo-rithms. Addison-Wesley, Reading, MA, second edition 1973.

www.manaraa.com

94 / Average-Case Analysis of Algorithms and Data StructuresD. E. Knuth [1973b]. The Art of Computer Programming. Volume 3: Sorting and Search-ing. Addison-Wesley, Reading, MA, 1973.D. E. Knuth [1977]. \Deletions that Preserve Randomness," IEEE Transactions on Soft-ware Engineering SE-3, 1977, 351{359.D. E. Knuth [1981]. The Art of Computer Programming. Volume 2: Semi-NumericalAlgorithms. Addison-Wesley, Reading, MA, second edition 1981.D. E. Knuth and A. Sch�onhage [1978]. \The Expected Linearity of a Simple Equiva-lence Algorithm," Theoretical Computer Science 6, 1978, 281{315.V. F. Kolchin, B. A. Sevast'yanov, and V. P. Chistyakov [1978]. Random Alloca-tions. V. H. Winston & Sons, Washington, 1978.A. G. Konheim and D. J. Newman [1973]. \A Note on Growing Binary Trees," DiscreteMathematics 4, 1973, 57{63.P.-A. Larson [1978]. \Dynamic Hashing," BIT 20(2), 1978, 184{201.E. E. Lindstrom and J. S. Vitter [1985]. \The Design and Analysis of BucketSortfor Bubble Memory Secondary Storage," IEEE Transactions on Computers C{34(3),March 1985.G. Louchard [1983]. \The Brownian Motion: a Neglected Tool for the Complexity Anal-ysis of Sorted Table Manipulation," RAIRO Theoretical Informatics 17, 1983, 365{385.G. S. Lueker and M. Molodowitch [1988]. \More Analysis of Double Hashing," Pro-ceedings of the 20th Annual Symposium on Theory of Computing, Chicago, IL, May 1988,354{359.C. M. Mathieu and J. S. Vitter [1988]. \Maximum Queue Size and Hashing withLazy Deletion," Proceedings of the 20th Annual Symposium on the Interface of ComputingScience and Statistics, Reston, VA, April 1988, 743{748.K. Mehlhorn and A. Tsakalidis [1989]. \Data Structures," in this handbook.A. Meir and J. W. Moon [1978]. \On the Altitude of Nodes in Random Trees," CanadianJournal of Mathematics 30, 1978, 997{1015.M. H. Nodine and J. S. Vitter [1990]. \Greed Sort: Optimal Sorting with MultipleDisks," Technical Report CS{90{04 Brown University, February 1990.A. M. Odlyzko [1982]. \Periodic Oscillations of Coe�cients of Power Series that SatisfyFunctional Equations," Advances in Math. 44, 1982, 180-205.A. M. Odlyzko and L. B. Richmond [1985]. \Asymptotic Expansions for the Coe�-cients of Analytic Generating Functions," �quationes Mathematic� 28, 1985, 50-63.F. W. J. Olver [1974]. Asymptotics and Special Functions, Academic Press, 1974.N. J. Pippenger [1989]. \Communication Networks," in this handbook.B. Pittel [1986]. \Paths in a Random Digital Tree: Limiting Distributions," Advances inApplied Probability 18, 1986, 139{155.B. Pittel [1987a]. \Linear Probing: The Probable Largest Search Time Grows Logarith-mically with the Number of Records," Journal of Algorithms 8(2), June 1987, 236{249.B. Pittel [1987b]. \On Probabilistic Analysis of a Coalesced Hashing Algorithm," Annalsof Probability 15(2), July 1987.

www.manaraa.com

References / 95G. P�olya [1937]. \Kombinatorische Anzahlbestimmungen f�ur Gruppen, Graphen undchemische Verbindungen," Acta Mathematics 68, 1937, 145{254. Translated in G. P�olyaand R. C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Com-pounds, Springer Verlag, New York, 1987.P. W. Purdom and C. A. Brown [1985]. The Analysis of Algorithms. Holt, Rinehartand Winston, New-York, 1985.M. R�egnier [1981]. \On the Average Height of Trees in Digital Search and DynamicHashing," Information Processing Letters 13, 1981, 64{66.M. R�egnier [1985]. \Analysis of Grid File Algorithms," BIT 25, 1985, 335{357.V. N. Sachkov [1978]. Verojatnosnie Metody v Kombinatornom Analize, Nauka, Moscow,1978.R. Sedgewick [1977a]. \Quicksort with Equal Keys," SIAM Journal on Computing 6(2),June 1977, 240{267.R. Sedgewick [1977b]. \The Analysis of Quicksort Programs," Acta Informatica 7, 1977,327{355.R. Sedgewick [1978]. \Data Movement in Odd-Even Merging," SIAM Journal on Com-puting 7(3), August 1978, 239{272.R. Sedgewick [1983]. \Mathematical Analysis of Combinatorial Algorithms," in Proba-bility Theory and Computer Science, edited by G. Louchard and G. Latouche, AcademicPress, London, 1983.R. Sedgewick [1988]. Algorithms. Addison-Wesley, Reading, 1988, second edition.D. L. Shell [1959]. \A High-Speed Sorting Procedure," Communications of the ACM2(7), July 1959, 30{32.J.-M. Steyaert and Ph. Flajolet [1983]. \Patterns and Pattern-Matching in Trees:an Analysis," Information and Control 58, 1983, 19{58.R. E. Tarjan and J. van Leeuwen [1984]. \Worst-Case Analysis of Set Union Algo-rithms," Journal of the ACM 31(2), April 1984, 245{281.E. C. Titchmarsh [1939]. The Theory of Functions, Oxford University Press, London,second edition 1939.C. J. Van Wyk and J. S. Vitter [1986]. \The Complexity of Hashing with LazyDeletion," Algorithmica 1(1), March 1986, 17{29.J. S. Vitter [1983]. \Analysis of the Search Performance of Coalesced Hashing," Journalof the ACM 30(2), April 1983, 231{258.J. S. Vitter and W.-C. Chen [1987]. Design and Analysis of Coalesced Hashing. OxfordUniversity Press, New York, 1987.J. S. Vitter and E. A. M. Shriver [1990]. Optimal I/O with Parallel Block Transfer,Proceedings of the 22nd Annual Symposium on Theory of Computing, Baltimore, MD,May 1990.J. Vuillemin [1980]. \A Unifying Look at Data Structures," Communications of the ACM23(4), April 1980, 229{239.

www.manaraa.com

96 / Average-Case Analysis of Algorithms and Data StructuresM. A. Weiss and R. Sedgewick [1988]. \Tight Lower Bounds for Shellsort," TechnicalReport CS{TR{137{88, Princeton University, February 1988.A. C.-C. Yao [1976]. \On the Average Behavior of Set Merging Algorithms," Proceedingsof the 8th Annual ACM Symposium on Theory of Computing, 1976, 192{195.A. C.-C. Yao [1978]. \On Random 2-3 Trees," Acta Informatica 9(2), 1978, 159{170.A. C.-C. Yao [1980]. \An Analysis of (h; k; 1) Shellsort," Journal of Algorithms 1(1),1980, 14{50.A. C.-C. Yao [1988]. \On Straight Selection Sort," Technical Report CS{TR{185{88,Princeton University, October 1988.A. C.-C. Yao and F. F. Yao [1976]. \The Complexity of Searching an Ordered RandomTable," Proceedings of the 17th Annual Symposium on Foundations of Computer Science,Houston, October 1976, 173{177.F. F. Yao [1989]. \Computational Geometry," in this handbook.

www.manaraa.com

(page 97)
Index and GlossaryEach index term is followed by a list of the sections relevant to that term. If a largenumber of sections are relevant, only one or two sections are included, typically wherethat term is �rst de�ned or used.Admissible constructions, 1, 4, 5.1.Analysis of algorithms, 0.asymptotics, 2.average case, 0.dynamic, 6.enumerations, 0,1.hashing, 5, 6.2.sorting, 3, 4.2, 4.3, 5.1.searching, 4, 5, 6.trees, 1, 2, 3.7, 4, 6.1, 6.3.Analytic function, 2.Asymptotic analysis, 2.Average-case complexity, 0.Binary trees, 1, 4.1.Binary search trees, 3.7, 4.2, 6.1, 6.3.Bubble sort, 3.4.Bucket algorithms, 5.1, 6.2.Characteristic functions, 2.5.Coalesced hashing, 5.1.Combinatorial enumerations, 0,1.Complex analysis, 2.Complexity measure, 0.Continued fractions, 6.1.Counting, 1.Darboux's method, 2.2.Data model, 0.Data structures, 0.Digital search, 4.3, 4.4, 5.1.Direct chaining, 5.1.Distribution sort, 5.1.

Double hashing, 5.2.Dynamic data model, 6.Enumerations, 0,1.Extendible hashing, 5.1.Euler-Maclaurin summation formula, 2.1.Fourier transforms, 2.5.Functional equations, 0, 1.4, 2.2.Generating function (GF), 0, 1.exponential generating function(EGF), 1.3.ordinary generating function (OGF),1.2.Hash function, 5.Hashing, 5, 6.2.coalesced hashing, 5.1.extendible hashing, 5.1.hashing with lazy deletion, 6.2.direct chaining, 5.1.double hashing, 5.2.linear probing, 5.2.maximum bucket occupancy, 5.1, 6.2.open addressing, 5.2.separate chaining, 5.1.Heaps, 3.7, 4.2, 6.1.Heapsort, 3.7.History model, 6.1, 6.2.Insertion sort, 3.2.Integrated cost, 6.1.Interpolation search, 5.1.

www.manaraa.com

98 / Index and GlossaryInversions, 3.k-d trees, 4.2.Labeled combinatorial structures, 1.3.Lagrange-B�urmann inversion, 1.4, 4.1,5.2.Laplace's method, 2.1.Laplace transforms, 2.5.Limit distribution, 2.5, 4.2, 4.3, 5.1.Linear probing, 5.2.Load factor, 5.1, 5.2.Maximum bucket occupancy, 5.1, 6.2.Maximum size of data structures, 5.1,6.2.Mellin transforms, 2.4, 3.4, 4.1, 4.3, 5.1.Merge sort, 3.3, 3.8.Meromorphic functions, 2.2, 2.4.Moment generating functions, 2.5.Multidimensional search, 4.2.Networks, 3.3, 3.8.Occupancy distribution, 5.1, 6.2.Open addressing, 5.2.Path length, 4.Patricia tries, 4.3.Pattern matching, 4.1.Permutations, 1.3, 3.Priority queues, 3.7, 4.2, 6.1, 6.2.Probabilistic analysis, 6.3.Quad trees, 4.2.Quicksort, 3.5, 4.2.Radix-Exchange sort, 3.6, 4.3.

Register allocation, 4.1.Saddle point method, 2.3, 2.5, 5.1.Searching, 4, 5, 6.Search trees, 3.7, 4.2, 6.1, 6.3.Selection sort, 3.7.Separate chaining, 5.1.Set union-�nd, 6.3.Shellsort, 3.3.Singularity, 2.2.Sorting, 3, 4.2, 4.3, 5.1.bubble sort, 3.4.distribution sort, 5.1.heapsort, 3.7.insertion sort, 3.2.merge sort, 3.3, 3.8.networks, 3.3, 3.8.quicksort, 3.5, 4.2.radix-exchange sort, 3.6, 4.3.selection sort, 3.7.Shellsort, 3.3.Stirling numbers, 1.3, 1.4.Stirling's formula, 2.1, 2.3.Symbolic di�erentiation, 4.1.Tauberian theorems, 2.2.Taylor expansion, 1.1, 1.4.Transfer lemma, 2.2, 4.1, 4.2.Trees, 1, 2, 3.7, 4, 6.1, 6.3.Tree compaction, 4.1.Tries, 4.3, 5.1.Urn model, 1.3, 5.1.Valuation function (VF), 4.

